วันจันทร์ที่ 21 สิงหาคม พ.ศ. 2560

อุบัติเหตุจาก saturator (๒) MO Memoir : Monday 21 August 2560

เวลาประมาณ ๑๖ นาฬิกา วันอังคารที่ ๒๕ กรกฎาคม ๒๕๖๐ ขวดแก้วที่ใช้ทำ saturator (รูปที่ ๑) เพื่อการระเหยเอทานอลเกิดระเบิด ผลจากแรงระเบิดทำให้นิสิตรายหนึ่ง (ที่ไม่ได้เกี่ยวข้องกับการทดลองที่ใช้ saturator ดังกล่าว แต่บังเอิญนั่งทำงานอยู่บริเวณนั้น) ได้รับบาดเจ็บจากเศษแก้วที่ปลิวบาด และหูอื้อไปข้างหนึ่ง (จากเสียงระเบิด) แรงระเบิดส่งผลให้เอทานอลที่บรรจุอยู่ใน saturator นั้นรั่วไหลออกมา เกิดเพลิงลุกไหม้บริเวณที่เกิดเหตุ แต่นิสิตรายอื่นที่อยู่ใกล้เคียงเข้ามาระงับเหตุได้ทัน นอกจากนี้กระจกของประตูตู้ hood (เป็นกระจกนิรภัย) ที่อยู่ห่างไปประมาณ ๓ เมตรแตกละเอียดด้วย (เข้าใจว่าเป็นเพราะเศษแก้วจากขวดที่ใช้ทำ saturator ปลิวไปกระทบ)
 
ก่อนเกิดเหตุ นิสิตรายหนึ่งเตรียมทำการทดลอง ด้วยการเปิดแก๊ส "ออกซิเจนบริสุทธิ์" ให้ไหลผ่าน saturator ไปยัง quartz reactor ที่บรรจุอยู่ furnace ภายใน reactor บรรจุตัวเร่งปฏิกิริยาเอาไว้ จากนั้นได้ทำการเพิ่มอุณหภูมิ furnace ไปยังอุณหภูมิที่ต้องการทำการทดลอง ช่วงระหว่างรอให้อุณหภูมิ furnace เข้าที่นั้นพบว่าอุณหภูมิ furnace ที่ตัว temperature indicator แสดงนั้นมีการกระโดดขึ้นไปสูงมากในบางจังหวะ นิสิตจึงรอให้ระบบนิ่งก่อนจะทำการทดลอง การระเบิดเกิดขึ้นในขณะที่เตรียมการทดลองนี้
 
อุปกรณ์ตัวเดียวกัน ส่วนผสมเดียวกัน เกิดการระเบิดเหมือน ๆ กัน แต่ห่างกันเกือบ ๖ ปี เรื่องราวเหตุการณ์ครั้งก่อนหน้านี้อ่านได้ใน Memoir ปีที่ ๔ ฉบับที่ ๓๖๓ วันศุกร์ที่ ๑๔ ตุลาคม ๒๕๕๔ เรื่อง "อุบัติเหตุจาก saturator"


รูปที่ ๑ ขวดแก้วที่ใช้ทำ saturator เป็นขวดที่มีลักษณะดังรูป แต่ตัวที่ระเบิดเป็นขวดขนาดความจุประมาณ 500 ml (ใหญ่กว่าตัวที่นำมาให้ดูเป็นตัวอย่างสองเท่า) ในขณะเกิดเหตุมีเอทานอลอยู่ประมาณ 70 ml
 
รูปที่ ๑ เป็นตัวอย่างขวดแก้วที่นำมาดัดแปลงทำเป็น saturator โดยเจาะรูที่ฝาสองรูป เพื่อต่อท่อให้แก๊สไหลเข้าหนึ่งรู และไหลออกหนึ่งรู ในระหว่างการใช้งานจะตั้งขวด saturator นี้ไว้บนพื้นโต๊ะปฏิบัติการโดยไม่มีอะไรป้องกัน ระดับที่ตั้ง saturator อยู่ที่ประมาณระดับความสูงของโต๊ะทำงานทั่วไป การทดลองนี้ได้กระทำมาเป็นระยะเวลาหนึ่งแล้ว
 
รูปที่ ๒ เป็นภาพร่างแผนผังบริเวณที่เกิดเหตุ โต๊ะตั้งอุปกรณ์ทดลองนั้นมีการแบ่งครึ่งออกเป็นสองด้านตามแนวยาว ทำให้สามารถตั้งอุปกรณ์ทดลองได้ทั้งสองฝั่งของโต๊ะ ในรูปที่ ๒ นั้นทางด้านหลังของ saturator มีอุปกรณ์ทดลองอื่นตั้งอยู่ ทางด้ายขวาจะเป็นตู้เหล็กติดตั้งอุปกรณ์วัด ทางด้านซ้ายเป็น furnace ที่ให้ความร้อนแก่ reactor ที่รับแก๊สที่ไหลมาจาก saturator ตัว saturator เองนั้นตั้งอยู่ระหว่างตัว furnace และตู้อุปกรณ์วัด


รูปที่ ๒ ภาพร่างแผนผังบริเวณที่เกิดอุบัติเหตุ โต๊ะปฏิบัติการตั้งอยู่ตรงกลางระหว่าง Hood และโต๊ะตั้งอุปกรณ์ทดลอง ระยะห่างระหว่าง Hood 2 และโต๊ะตั้งอุปกรณ์ทดลองประมาณ 3 เมตร

ในขณะเกิดเหตุนั้นมีนิสิตผู้หนึ่งนั่งทำงานอยู่ที่โต๊ะปฏิบัติการ โดยนั่งหันหลังให้แต่เยื้องออกมาทางด้านขวาของตัว saturator แรงระเบิดที่เกิดขึ้นทำให้เศษแก้วปลิวบาดแขนและลำตัวด้านข้างด้านซ้ายของนิสิตที่นั่งทำงาน เสียงที่ดังทำให้หูด้านซ้ายของนิสิตผู้นั้นอื้อไปเป็นวัน และยังทำให้กระจกประตู Hood 2 (ที่เป็นกระจกนิรภัยชนิด tempered) ที่อยู่ห่างออกไปนั้นแตกละเอียด มีไฟเกิดขึ้นตรงบริเวณด้านข้างตู้อุปกรณ์วัดคุม แต่ได้รับการดับลงอย่างรวดเร็วด้วยการใช้เครื่องดับเพลิงชนิดผงเคมีแห้ง
 
การระเบิดที่ saturator เชื่อว่าเกิดจากการลุกไหม้ที่เกิดขึ้นกับแก๊สที่อยู่ใน reactor ส่วนต้นตอที่ทำให้เกิดการลุกไหม้นั้นไม่สามารถยืนยันได้ว่าเกิดจากการที่ furnace นั้นมีอุณหภูมิสูงเกินไปจากเกินค่าอุณหภูมิติดไฟได้ด้วยตนเอง (ที่ภาษาอังกฤษเรียกว่า autoignition temperature หรือ self ignition temperature) หรือเกิดจากการทำปฏิกิริยาของตัวเร่งปฏิกิริยาที่เป็นปฏิกิริยาคายความร้อนและเร่งตัวเองจนทำให้ไอผสมที่อยู่โดยรอบเกิดการลุกไหม้ได้ ประกอบกับการที่การทดลองนี้ใช้ออกซิเจนบริสุทธิ์ผสมกับเชื้อเพลิง ไม่เพียงแค่โอกาสที่ไอผสมจะเกิดการลุกไหม้จะเกิดได้ง่ายขึ้น แต่ความรุนแรงของการเผาไหม้จะเพิ่มมากตามไปด้วย ทำให้เปลวไฟที่เกิดขึ้นนั้นสามารถวิ่งทวนทิศทางการไหลของแก๊สจาก reactor ย้อนไปตามท่อ (ที่เป็นสายยาง) ไปยัง saturator ได้ ทำให้เกิดการระเบิดรุนแรงที่ saturator เนื่องจากเป็นแหล่งที่มีไอผสมพร้อมเผาไหม้อยู่เป็นจำนวนมาก

ส่วนสถานที่เกิดเหตุนั้นมีลักษณะเป็นเช่นใด ก็ขอเชิญชมภาพที่ถ่ายมาให้ดูก็แล้วกัน (รูปที่ ๓ ถึง ๑๒) เนื้อหาเหตุการณ์ส่วนที่เหลือก็อยู่ในคำบรรยายภาพต่าง ๆ อยู่แล้ว

รูปที่ ๓ บริเวณที่เกิดเหตุ ถ่ายไว้ในตอนเช้าวันที่สองหลังการระเบิด พื้นที่ดังกล่าวได้รับการทำความสะอาดแล้ว รูปนี้เป็นการมองจากด้านหลังจุดระเบิดไปยังประตู Hood ที่ได้รับความเสียหาย

รูปที่ ๔ ถ่ายในวันเดียวกับรูปที่ ๓ แต่เป็นการมองจากตำแหน่งประตู Hood ที่แตกออกมา 1 คือบริเวณที่ตั้ง saturator ที่เกิดการระเบิดในวันเกิดเหตุ ส่วน 2 คือ furnace ที่ใช้ในการทดลอง

รูปที่ ๕ บริเวณตำแหน่งที่เกิดการระเบิด ถ่ายไว้ในเช้าวันรุ่งขึ้นหลังวันระเบิด สภาพที่เกิดเหตุส่วนใหญ่ยังคงสภาพไว้เช่นเดียวกับหลังการระงับเหตุเสร็จ คือในระหว่างการดับเพลิงนั้น ไม่สามารถยืนยันได้ว่ามีการเคลื่อนย้ายวัตถุใดบ้าง ทราบแต่ว่าหลังจากที่ระงับเหตุได้เสร็จสมบูรณ์และนำคนเจ็บส่งโรงพยาบาลแล้ว ยังไม่มีการจัดการใด ๆ กับที่เกิดเหตุ ยังดีหน่อยตรงที่นิสิตที่เข้ามาดับเพลิงนั้นใช้ผงเคมีแห้ง ไม่ได้หยิบถังโฟมมาใช้ เพราะถ้าใช้ถังโฟมอาจเกิดปัญหาไฟฟ้าลัดวงจรตามมาได้ เพราะไม่ได้มีการตัดระบบไฟฟ้าในที่เกิดเหตุออก

รูปที่ ๖ บริเวณที่เกิดการระเบิด ทางด้านล่างซ้ายของภาพที่เห็นมีวาล์วสองตัวคือฝาปิดตัว saturator (ส่วนลำตัวที่เป็นแก้วกระจายหายไปหมดแล้ว) ตรงกลางคือ furnace ส่วนสายไฟที่อยู่ทางมุมซ้ายบนเป็นสายสัญญาณวัด พึงสังเกตตำแหน่งของคราบเขม่าบนผนังตู้อุปกรณ์วัด ทางด้านซ้ายบนแถวสายสัญญาณเป็นคราบเกิดจากสายไฟที่ไหม้ ส่วนที่อยู่ทางด้านล่าง (ด้านหลัง furnace) เกิดจากแอลกอฮอล์ที่รั่วออกมา ที่เห็นเป็นฝุ่นผงขาวทั่วไปหมดคือผงเคมีแห้งจากถังดับเพลิง

รูปที่ ๗ ฝาปิดขวดแก้วที่ใช้ทำ saturator ท่อยาวเป็นท่อให้แก๊สพาหะไหลเข้า (รอยไหม้ที่ปลายท่อเข้าใจว่าเกิดจากสายยางที่ต่อจากปลายท่อลงไปใต้ระดับของเหลวที่บรรจุอยู่) ส่วนท่อสั้นเป็นท่อให้ไอผสมไหลออก เศษแก้วที่เห็นเป็นเศษของตัว saturator ที่แตกออก พึงสังเกตว่าจะแตกออกโดยมีรูปร่างที่มีลักษณะแหลมคม ที่แปลกใจอยู่หน่อยก็คือไม่เห็นเศษแก้วชิ้นใหญ่ เช่นก้นขวดเหลือเลย ไม่รู้ว่ามันแตกเป็นชิ้นเล็กหมดหรือถูกเก็บทิ้งไปก่อนหน้าแล้วเพราะหาคนให้คำตอบนี้ไม่ได้


รูปที่ ๘ สายสัญญาณที่เกิดการลุกไหม้ (ที่เห็นรอยดำเป็นรูปสายสัญญาณนั่นไม่ใช่คราบเขม่า แต่เป็นเงาของสายสัญญาณที่ทอดลงผลผนังตู้อุปกรณ์วัด) พึงสังเกตว่าสีที่ทาเคลือบผนังตู้อุปกรณ์วัดนั้นไม่ได้รับผลกระทบจากความร้อนของเปลวไฟเท่าใดนัก

รูปที่ ๙ ภาพขยายตรงส่วนบริเวณชุมสายของสายสัญญาณในรูปที่ ๘


รูปที่ ๑๐ บริเวณที่นิสิตที่ได้รับบาดเจ็บนั่งทำงาน ขณะนั้นใช้เก้าอี้มีพนักพิง หันหลังโดยเยื้องมาทางด้านขวาของจุดที่เกิดการระเบิด เศษแก้วที่เห็นบนพื้นด้านหลังเก้าอี้ไม่สามารถบอกได้ว่าเป็นเศษแก้วที่ปลิวมากระทบเก้าอี้จากการระเบิด หรือเกิดจากการเข้าไประงับเหตุ สิ่งของต่าง ๆ ที่วางอยู่บนโต๊ะปฏิบัติการทางด้านซ้าย แม้ว่าจะมีน้ำหนักเบาก็ไม่ได้ถูกพัดปลิวจากการระเบิด ส่อให้เห็นว่ากระจก Hood ที่แตกนั้นไม่น่าจะเป็นผลจากแรงอัด


รูปที่ ๑๑ บริเวณพื้นที่ทำงานของ Hood ที่กระจกแตก กระจกบานประตูเป็นกระจกนิรภัยชนิด tempered ที่จะแตกออกเป็นเม็ดข้าวโพดเล็ก ๆ เต็มไปหมดถ้าผิวกระจกมีรอยขูดขีดลึกลงไปเพียงนิดเดียว เศษกระจกที่แตกจะมีลักษณะใกล้เคียงกับรูปทรงสี่เหลี่ยม (เป็นรูปทรงที่มีมุมแหลมน้อยสุด) กระจกบานนี้สูงประมาณ 60 cm ยาวประมาณ 180 cm

รูปที่ ๑๒ บริเวณพื้นด้านหน้า hood ที่กระจกแตก พบเศษแก้วที่มีลักษณะแหลมคมตกปนอยู่ด้วย (ในกรอบสี่เหลี่ยม) ทำให้เชื่อว่าน่าจะมีเศษแก้วจาก saturator บางชิ้นปลิวมากระแทกบานกระจกของประตู hood ทำให้กระจกของประตู hood แตกออก

ประเด็นเรื่องไอผสมระหว่าง เอทานอล + ออกซิเจน เกิดการลุกติดไฟได้อย่างไรนั้น โดยส่วนตัวแล้วคิดว่าบทบาทของตัวเร่งปฏิกิริยาที่บรรจุอยู่ใน reactor ที่ใช้ในการทดลองในขณะนั้น เป็นสิ่งที่ไม่สามารถตัดทิ้งไปได้ ในกรณีของตัวเร่งปฏิกิริยาการออกซิไดซ์ที่เป็นปฏิกิริยาคายความร้อนนั้น ความร้อนที่เกิดขึ้นมีสิทธิทำให้อนุภาคตัวเร่งปฏิกิริยานั้นร้อนจัดกว่าแก๊สที่ไหลผ่านโดยรอบ และถ้าแก๊สที่ไหลผ่านนั้นมีส่วนผสมอยู่ในช่วง flammability limit ด้วยแล้ว โอกาสที่แก๊สนั้นจะลุกติดไฟอันเป็นผลจากการสัมผัสกับอนุภาคตัวเร่งปฏิกิริยาที่มีอุณหภูมิสูงกว่าอุณหภูมิติดไฟได้ด้วยตนเองก็เป็นประเด็นที่ควรต้องพึงคำนึงถึงด้วย ส่วนที่ว่าจะเกิดการลุกติดไฟทันทีเมื่อสัมผัส หรือต้องรอให้ตัวเร่งปฏิกิริยาสะสมความร้อนก่อนเป็นระยะเวลาหนึ่ง ตรงนี้คงขึ้นอยู่กับชนิดตัวเร่งปฏิกิริยาและเชื้อเพลิง
เรื่องการจุดไฟด้วยตัวเร่งปฏิกิริยานี้ไม่ใช่เรื่องใหม่ กองทัพสหรัฐเองก็เคยมีการพิจารณาเทคนิคการใช้ตัวเร่งปฏิกิริยาในการจุดไฟให้กับเครื่องพ่นไฟที่ใช้ในการรบ มาตั้งแต่ยุคสมัยสงครามโลกครั้งที่สองแล้ว (รูปที่ ๑๓)


รูปที่ ๑๓ ส่วนหนึ่งของข้อความจากเอกสาร "Chemical ignition of flame thrower" ที่เกี่ยวข้องกับการจุดไฟให้กับเชื้อเพลิงเหลวที่ฉีดออกจากหัวฉีดของเครื่องพ่นไฟ ของกองทัพสหรัฐที่จัดทำในปีค.ศ. ๑๙๔๔ (พ.ศ. ๒๔๕๗) หรือก่อนสงครามโลกครั้งที่ ๒ สิ้นสุดหนึ่งปี มีการกล่าวถึงการพิจารณาใช้ตัวเร่งปฏิกิริยาเป็นตัวจุดไฟให้กับเชื้อเพลิง

อีกประเด็นหนึ่งที่ขอบันทึกไว้เพื่อพิจารณาคือ ถ้าเปลี่ยนท่อด้านขาออกจาก saturator ไปยัง reactor จากเดิมที่เป็นท่อสายยางไปเป็นท่อโลหะที่มีขนาดเล็กจะช่วยป้องกันการเดินทางย้อนกลับของเปลวไฟได้หรือไม่ ท่อขนาดเล็กจะช่วยเพิ่มความเร็วเชิงเส้นในการไหลให้สูงขึ้น (ถ้าสูงมากกว่าความเร็วของเปลวไฟก็จะทำให้เปลวไฟเดินทางย้อนกลับไม่ได้) และท่อโลหะขนาดเล็กจะมีพื้นที่ผิวต่อหน่วยปริมาตรที่สูง ทำให้ระบายความร้อนออกสู่สิ่งแวดล้อมภายนอกได้ดี จึงน่าจะมีโอกาสที่จะทำให้เปลวไฟเย็นลงจนดับได้ (ทำนองเดียวกับการทำงานของ flame arrester)

วันอาทิตย์ที่ 20 สิงหาคม พ.ศ. 2560

ปัจจัยที่ส่งผลต่อค่า autoignition temperature (๒) MO Memoir : Sunday 20 August 2560

ในตอนที่ ๑ ของเรื่องนี้ ได้นำเสนอผลการทดลองที่แสดงให้เห็นว่าค่า "อุณหภูมิติดไฟได้ด้วยตนเอง" (ที่ภาษาอังกฤษเรียกว่า Autoignition temperature (AIT) หรือ Self-ignition temperature (SIT)) ที่วัดได้นั้นขึ้นอยู่กับปัจจัยหลายประการ ไม่ว่าจะเป็นวิธีการวัดหรือวัสดุที่ใช้ทำอุปกรณ์ ส่วนตอนที่ ๒ ที่นำเสนอในวันนี้จะกล่าวถึงผลของออกซิเจนและสัดส่วนการผสมระหว่าง เชื้อเพลิง + อากาศ ที่ส่งผลต่อค่าอุณหภูมิติดไฟได้ด้วยตนเองที่วัดได้
 
ความสนใจผลของความเข้มข้นและชนิดของสารออกซิไดซ์ที่มีต่อค่าอุณหภูมิติดไฟได้ด้วยตนเองของสารต่าง ๆ นั้นมีมานานแล้ว ดังเช่นบทความของ Furno และคณะ (รูปที่ ๘) ที่ใช้เป็นต้นเรื่องของ Memoir ฉบับนี้ ได้ศึกษาผลของออกซิเจนบริสุทธิ์และไนโตรเจนเททรอกไซด์ที่มีต่อค่าอุณหภูมิติดไฟได้ด้วยตนเอง นอกนี้ยังได้ศึกษาผลของขนาดปริมาตรอุปกรณ์ (ที่เป็นตัวกำหนดปริมาตรไอผสม) ที่มีต่อค่าที่วัดได้ด้วย อุปกรณ์ที่เขาใช้ในการทดลองนั้นแสดงไว้ในรูปที่ ๙ ส่วนผลการทดลองที่รายงานไว้นั้นแสดงไว้ในรูปที่ ๑๐


รูปที่ ๘ บทความของ Furno และคณะที่ตีพิมพ์ในวารสาร Journoal of Chemical and Engineering data vol. 13 no. 2 เดือนเมษายนปีค.ศ. ๑๙๖๘ (พ.ศ. ๒๕๑๑) หน้า ๒๔๓-๒๔๙ บทความนี้วัดค่าอุณหภูมิติดไฟได้ด้วยตนเองของสารต่าง ๆ ที่ความดันต่ำกว่าความดันบรรยากาศ (ความดันบรรยากาศคือ 760 mm.Hg) ในบรรยากาศของสารออกซิไดซ์ต่างชนิดกัน และผลของปริมาตรไอผสมที่ใช้ทดสอบ (ขนาดปริมาตรภาชนะบรรจุ) หมายเลขรูปในบทความชุดนี้เรียงต่อมาจากตอนที่ ๑

(หมายเหตุ : แก๊ส nitrogen tetroxide หรือ dinitrogen tetroxide - N2O4 แก๊สตัวนี้จะอยู่ในสภาพสมดุลกับ NO2 โดยที่อุณหภูมิต่ำ สมดุลจะมีแนวโน้มมาอยู่ทาง N2O4 แต่เมื่ออุณหภูมิสูงขึ้นสมดุลจะมีแนวโน้มไปอยู่ทาง NO2 แก๊สตัวนี้เคยได้รับความนิยมในการใช้เป็นสารออกซิไดซ์ให้กับเชื้อเพลิงขับเคลื่อนจรวดเนื่องจากมีจุดเดือดสูง (ประมาณ 21.7ºC ทำให้สามารถเก็บในรูปของเหลวได้ง่ายโดยไม่ต้องใช้อุณหภูมิที่ต่ำหรือความดันที่สูงช่วย)

รูปที่ ๙ อุปกรณ์ที่ใช้ในการทดลองของ Furno และคณะ (บทความในรูปที่ ๘) มาตรฐาน ASTM E659 Standard Test Method for Autoignition Temperature of Liquid Chemicals ก็ใช้อุปกรณ์หน้าตาทำนองเดียวกันนี้ แตกต่างกันหน่อยตรงที่ขนาดและวัสดุที่ใช้ทำ vessel ที่ใช้ในการทดลอง โดย ASTM E659 นั้นใช้ฟลาสค์ก้นกลมทำจากแก้ว borosilicate (และยังมีการกำหนดปริมาตรภาชนะไว้ที่ปริมาตรเดียว) แต่เนื่องจากวัสดุและรูปทรงภาชนะดังกล่าวไม่เหมาะกับการทดลองที่ความดันต่ำ Furno และคณะก็เลยจำเป็นต้องเปลี่ยนชนิด vessel ที่ใช้ในการทดลอง

ผลการทดลองของ Furno และคณะในรูปที่ ๑๐ แสดงให้เห็นว่า 
 
(ก) ใน vessel ขนาดเล็ก (200 ml) ค่าอุณหภูมิติดไฟได้ด้วยตนเองนั้นสูงกว่าใน vessel ขนาดใหญ่ (4900 ml)
(ข) ค่าอุณหภูมิติดไฟได้ด้วยตนเองของสารต่าง ๆ ในบรรยากาศออกซิเจนหรือ N2O4 นั้นต่ำกว่ากรณีของอากาศ

แต่ขนาดที่ลดลงของอุณหภูมิติดไฟได้ด้วยตนเองเมื่อเทียบระหว่างในอากาศและในออกซิเจนนั้นขึ้นอยู่กับชนิดของสารและขนาดของ vessel ที่ใช้ในการทดลอง เช่นในกรณีของนอร์มัลบิวเทน (n-Butane) ที่ความดัน 740 mmHg ในกรณีของ vessel ปริมาตร 200 ml นั้นในอากาศจะมีอุณหภูมิติดไฟได้ด้วยตนเองที่ 372ºC แต่ถ้าเป็นในบรรยากาศออกซิเจนค่า อุณหภูมิติดไฟได้ด้วยตนเองจะลดลงเหลือ 286ºC หรือลดลงถึง 86ºC แต่พอทำการทดลองด้วย vessel ปริมาตร 4900 ml พบว่าเมื่อเปลี่ยนจากอากาศมาเป็นออกซิเจน ค่าอุณหภูมิติดไฟได้ด้วยตนเองลดลงจาก 288ºC เพียงแค่ 10ºC เท่านั้นมาเป็น 278ºC พอมาเป็นกรณีของนอร์มัลเฮปเทน (n-Heptane) ที่ความดัน 740 mmHg เช่นกัน ในกรณีของ vessel ปริมาตร 200 ml พบว่าเมื่อเปลี่ยนจากอากาศมาเป็นออกซิเจน ค่าอุณหภูมิติดไฟได้ด้วยตนเองลดลงจาก 232ºC เพียงแค่ 6ºC เท่านั้นมาเป็น 226ºC และในกรณีของ vessel ปริมาตร 4900 ml พบว่าเมื่อเปลี่ยนจากอากาศมาเป็นออกซิเจน ค่าอุณหภูมิติดไฟได้ด้วยตนเองลดลงเพียงแค่ 2ºC เท่านั้นคือจาก 204ºC มาเป็น 202ºC

รูปที่ ๑๐ ผลการทดลองที่ Furno และคณะรายงานไว้ในบทความ (UDMH คือ Unsymmetrical dimethyl hydrazine)

ตรงนี้ต้องขอย้ำเตือนเอาไว้หน่อยว่า ค่าอุณหภูมิติดไฟได้ด้วยตนเองเป็นตัวเลขที่บอกให้ทราบว่าเชื้อเพลิงชนิดนั้น (เมื่อผสมกับสารออกซิไดซ์ในสัดส่วนที่พอเหมาะ) สามารถเริ่มเกิดปฏิกิริยาการเผาไหม้ได้เองได้ยากง่ายเพียงใด แต่ไม่ได้บอกถึงความรุนแรงของการเผาไหม้ ที่มันขึ้นกับอัตราการเกิดปฏิกิริยา ในบรรยากาศของออกซิเจนบริสุทธิ์นั้นเชื้อเพลิงจะเผาไหม้ได้รวดเร็วมาก อาจมีการคายพลังงานในปริมาณมากออกมาในระยะเวลาสั้น ๆ ดังนั้นสำหรับเชื้อเพลิงที่มีปริมาณเท่ากัน การเผาไหม้ในอากาศอาจจะเป็นเพียงแค่ flash fire (คือเปลวไฟลุกแล้ววิ่งแผ่อออกไป) แต่ถ้าเป็นการเผาไหม้ในออกซิเจน อาจจะเป็นการระเบิดได้ (มีการเกิด shock wave)

บทความที่สองที่นำมาเล่าใน Memoir ฉบับนี้เป็นบทความของ Chen และคณะที่ตีพิมพ์ในวารสาร J. Chem. Eng. Data ปีค.ศ. ๒๐๑๐ (รูปที่ ๑๑) ที่เลือกเอาบทความนี้มาก็เพราะเป็นการทดลองเกี่ยวกับการวัดค่าอุณหภูมิติดไฟได้ด้วยตนเองของแอลกอฮอล์ชนิดต่าง ๆ (รวมทั้งเอทานอลที่เป็นตัวการการเกิดระเบิดในห้องปฏิบัติการที่กลุ่มเราทำงานอยู่ ที่เป็นต้นเรื่องทำให้เกิดบทความชุดนี้ขึ้น) งานวิจัยนี้เริ่มมาจากการเห็นปัญหาค่าอุณหภูมิติดไฟได้ด้วยตนที่รายงานไว้ในแหล่งอ้างอิงต่าง ๆ นั้นมีความแตกต่างกัน ทำให้เกิดความสับสนแก่ผู้ใช้ว่าค่าไหนเป็นค่าที่ถูกต้อง การทดลองของบทความนี้ใฃ้อุปกรณ์อิงตามมาตรฐาน ASTM E659-78 (2005) (รูปที่ ๑๒) ส่วนหนึ่งของผลการทดลองที่รายงานไว้นำมาแสดงในรูปที่ ๑๓ ซึ่งจะเห็นได้ว่าค่าอุณหภูมิติดไฟได้ด้วยตนเองนั้นขึ้นอยู่กับความเข้มข้นของไอเชื้อเพลิงในอากาศ (ความเข้มข้นไอเชื้อเพลิงในอากาศขึ้นอยู่กับปริมาตรแอลกอฮอล์ที่ฉีดเข้าไป) โดยความเข้มข้นที่เข้าหา lower limit หรือ upper limit นั้นจะให้ค่าค่าอุณหภูมิติดไฟได้ด้วยตนเองสูงกว่าความเข้มข้นในช่วงกลาง

รูปที่ ๑๑ บทความของ Chen และคณะที่ตีพิมพ์ในวารสาร J. Chem. Eng. Data ปีค.ศ. ๒๐๑๐ หน้า ๕๐๕๙-๕๐๖๔


รูปที่ ๑๒ อุปกรณ์วัดค่าอุณหภูมิติดไฟได้ด้วยตนเอง (จาก ASTM E659-78 (2005))

รูปที่ ๑๓ ส่วนหนึ่งของผลการทดลองที่ Chen และคณะรายงานไว้ โดยในการทดลองนั้นใช้การตั้งอุณหภูมิฟลาสค์ไว้ที่ค่าหนึ่งก่อน จากนั้นจะทำการฉีดแอลกอฮอล์ที่ปริมาตรหนึ่ง (สมมุติว่าเป็น 100 ไมโครลิตร) เข้าไปในอุปกรณ์ฟลาสค์ที่ตั้งค่าไว้ที่อุณหภูมิหนึ่ง ถ้าพบว่าแอลกอฮอล์ที่ฉีดเข้าไปนั้นเกิดการลุกไหม้ (จุดวงกลมสีแดง) ก็จะลดอุณหภูมิฟลาสค์ให้ต่ำลงก่อนจะทำการฉีดแอลกอฮอล์เข้าไปใหม่อีกครั้ง (ที่ปริมาตรเดิมคือ 100 ไมโครลิตร) ถ้าพบว่าเกิดการลุกติดไฟก็จะลดอุณหภูมิฟลาสค์ให้ต่ำลงไปอีก จนกว่าจะถึงอุณหภูมิที่พบว่าแอลกอฮอล์ที่ฉีดเข้าไปนั้นไม่ลุกติดไฟ (จุดเครื่องหมายกากบาทสีดำ) จากนั้นก็ทำการทดลองซ้ำใหม่โดยเปลี่ยนปริมาตรแอลกอฮอล์ที่ฉีด (เช่น 120, 130, ..., 250 ไมโครลิตร) ข้อมูลผลการทดลองของบทความนี้แสดงให้เห็นว่าค่า autoignition temerature ที่วัดได้นั้นขึ้นอยู่กับปริมาตรแอลกอฮอล์ที่ฉีดเข้าไป (หรือความเข้มข้นของแอลกอฮอล์ในอากาศ)

Memoir ฉบับนี้ก็ขอจบเพียงแค่นี้ ตอนต่อไปก็จะเป็นเรื่องของเหตุการณ์การระเบิดที่เกิดขึ้นเมื่อปลายเดือนที่แล้ว