กระแส Life Cycle Assessment (LCA) เคยมาแรงอยู่ช่วงหนึ่งในบ้านเรา ก่อนจะเห็นเงียบหายไป ไม่รู้ว่าเป็นเพราะความต้องการเทคโนโลยีที่เรียกกันว่า "Green" หรือเปล่า เลยไม่อยากเอาLCA มาพูด เพราะว่าถ้าเอา LCA มาใช้แล้ว อาจจะเห็นว่าสิ่งที่เป็นจริงนั้นอาจไม่ใช่ดังที่ใครต่อใครเขาอ้างกัน
เทคนิค LCA เป็นการวิเคราะห์ผลกระทบต่อสิ่งแวดล้อมของผลิตภัณฑ์ เรียกว่าตั้งแต่เกิด (ผลิต) จนตาย (กำจัด) ทำให้บางทีเขาก็เรียกเทคนนิคนี้ว่า cradle-to-grave หรือจากเปลไปจนถึงหลุมฝังศพ แต่การวิเคราะห์เทคนิคนี้จะว่าไปมันก็ไม่ใช่เรื่องง่าย เพราะในแต่ละท้องที่นั้นมีความแตกต่างกันอยู่ อย่างเช่นมลพิษที่เกิดจากพลังงานไฟฟ้าที่ต้องนำมาใช้ในการผลิตผลิตภัณฑ์นั้นแต่ละประเทศใช้ไม่เหมือนกันอยู่ และตัวเลขตัวนี้มันก็ปรับแต่งกันได้ จะใช้การไปหยิบเอาข้อมูลของประเทศอื่นที่มีสัดส่วนการใช้เชื้อเพลิงไม่เหมือนกันนั้นมาใช้ก็ไม่น่าจะถูกต้อง นอกจากนี้บางผลิตภัณฑ์มันก็พูดยากว่ามันมีอายุการใช้งานเท่าใด เช่นพวกบรรจุภัณฑ์ที่ล้างทำความสะอาดและนำกลับมาใช้ใหม่ได้ (เช่น เครื่องดื่มบรรจุขวดแก้วที่ต้องส่งคือผู้ผลิตเพื่อนำไปล้างและใช้งานใหม่ ภาชนะพลาสติกที่สามารถนำไป recycle ได้)
การนำเอาแหล่งพลังงานต่าง ๆ ที่มีอยู่ในธรรมชาติมาใช้งานนั้น มันจะคุ้มค่าก็ต่อเมื่อ พลังงานของแหล่งพลังงานนั้น เมื่อหักลบเอาพลังงานส่วนที่ต้องใช้ในการแปรรูปพลังงานนั้นให้อยู่ในรูปแบบที่ใช้งานได้แล้ว ต้องมีพลังงานเหลือ ตรงนี้ลองดูตัวอย่างพลังงานจากปิโตรเลียมในรูปที่ ๑ ข้างล่าง
การนำปิโตรเลียมที่อยู่ใต้พิภพมาใช้งาน จะต้องมีการใช้พลังงานในกระบวนการผลิต (E3) ที่เริ่มจากการขุดเจาะ, การเก็บรักษาน้ำมันดิบที่ได้, การขนส่ง, การกลั่น และการเก็บผลิตภัณฑ์ปิโตรเลียมที่ได้ (ที่มีพลังงาน E1) ถ้าพลังงานของผลิตภัณฑ์ปิโตรเลียมสุดท้าย E1 นั้น มีค่ามากกว่าพลังงานที่ใช้ในกระบวนการผลิตทุกขึ้นตอน E3 (สมมุติว่าพลังงาน E3 นี้ต่างก็ได้มาจากปิโตรเลียมทั้งหมด) ก็จะมีพลังงาน E2 เหลือป้อนตลาด มันก็จะคุ้มค่าที่จะนำมาใช้ กล่าวคือสมมุติว่าน้ำมันดิบ 100 ลิตรผลิตเป็นผลิตภัณฑ์ได้ 100 ลิตร แต่พลังงานที่ต้องใช้ผลิตนั้นเทียบเท่ากับน้ำมัน 20 ลิตร ดังนั้นก็จะเหลือน้ำมันป้อนออกสู่ตลาด 80 ลิตร ถ้าเป็นอย่างนี้มันก็คุ้มค่าที่จะนำเอาน้ำมันดิบมาใช้เป็นแหล่งพลังงาน
นอกจากนี้ในบางครั้งพลังงานที่ต้องใช้ในการเก็บรักษาก็เข้ามามีบทบาทด้วย เชื้อเพลิงปิโตรเลียมเหลวนั้นสามารถเก็บในถังธรรมดาที่ความดันบรรยากาศได้ ในขณะที่แก๊สหุงต้มต้องมีการใช้คอมเพรสเซอร์ (ใช้พลังงาน) เพื่อเพิ่มความดันให้เป็นของเหลวภายใต้ความดันที่อุณหภูมิห้อง ในขณะที่การผลิตแก๊สธรรมชาติเหลวต้องมีทั้งการใช้ความดันและระบบทำความเย็น เพื่อทำให้แก๊สมีเทนเป็นของเหลวที่ความดันบรรยากาศ
รูปที่ ๑ พลังงานที่เกี่ยวข้องกับการผลิตเชื้อเพลิงปิโตรเลียมจากน้ำมันดิบ
ในกรณีของเชื้อเพลิงที่ได้จากพืชนั้นมีความยุ่งยากในการคำนวณมากกว่า เพราะเชื้อเพลิงที่ได้จากพืชนั้นมันแตกต่างไปจากเชื้อเพลิงที่ต้องใช้ในการแปรรูปพืชนั้นให้เป็นเชื้อเพลิง อย่างเช่นเราผลิตเอทานอลเพื่อมาทดแทนน้ำมันเบนซิน แต่เราใช้น้ำมันดีเซลในการขนส่งวัตถุดิบและใช้ถ่านหินในการผลิตไอน้ำเพื่อการกลั่น มันก็เกิดคำถามขึ้นมาว่าเชื้อเพลิงเอทานอลนั้นเป็นมิตรต่อสิ่งแวดล้อมหรือไม่ ซึ่งมันจะเป็นมิตรก็ต่อเมื่อพลังงานที่ได้จากเอทานอลที่ผลิตได้นั้น ต้องมากกว่าพลังงานที่ต้องใช้ในการผลิตเอทานอล (ซึ่งดูเหมือนว่าในความเป็นจริงจะไม่ใช่เช่นนั้น)
รูปที่ ๒ ข้างล่างเป็นแผนผังสมดุลพลังงาน (วาดขึ้นมาเอง) สำหรับการผลิตเชื้อเพลิงเหลวจากพืช เพื่อใช้แทนน้ำมันปิโตรเลียม (เช่นผลิตเอทานอลและไบโอดีเซล)
รูปที่ ๒ พลังงานที่เกี่ยวข้องกับการผลิตเชื้อเพลิงจากพืชเพื่อทดแทนการใช้ปิโตรเลียม
ถ้าดูในแง่ของสมดุล CO2 แล้ว พลังงานจากปิโตรเลียมนั้นถือว่าผลิต CO2 เพียงอย่างเดียว ในขณะที่พลังงานจากพืชนั้นจะมีทั้งส่วนที่ดักจับ CO2 (คือการเจริญเติบโตของพืช) และส่วนที่ผลิต CO2 (คือการนำเอาเชื้อเพลิงที่ได้ไปใช้งาน) เชื้อเพลิงจากพืชจะช่วยลดอัตราการเพิ่ม CO2 ในบรรยากาศ (เมื่อเทียบกับพลังงานปิโตรเลียม) ก็ต่อเมื่อ CO2 ที่เกิดจากพลังงานที่ป้อนตลาด (E2) + พลังงานที่ต้องใช้ในการผลิต (E3) + พลังงานที่ต้องใช้ในการผลิตเคมีภัณฑ์ที่เกี่ยวข้อง เช่นปุ๋ยเคมี, ยาปราบศัตรูพืช, เมทานอลที่ในการผลิตไบโอดีเซล (E4) เมื่อหักลบเอาปริมาณ CO2 ที่พืชดึงออกจากบรรยากาศออกไปแล้ว มีค่าน้อยกว่า CO2 ที่เกิดจากการเผาเชื้อเพลิงปิโตรเลียมเพื่อให้ได้พลังงานเท่ากัน
โดยหลักการแล้ว ถ้าพื้นที่ไหนปลูกเพื่อเพื่อการบริโภคเป็นอาหารได้ ก็ไม่ควรนำมาใช้ในการปลูกพืชเพื่อเป็นเชื้อเพลิง พื้นที่ที่ควรนำมาใช้ปลูกพืชเพื่อนำมาเป็นพลังงานควรเป็นพื้นที่ที่ไม่เหมาะกับการปลูกพืชเพื่อเป็นอาหาร เช่นในดินไม่ค่อยมีธาตุอาหารสำหรับพืช หรือดินปนเปื้อนสารพิษ ถ้าเป็นแบบหลังนี้ การหาปริมาณพลังงานที่ต้องใช้ในการเพาะปลูก (เช่น พลังงานที่ต้องใช้ในการรดน้ำ ดูแลการเจริญเติบโต และพลังงานที่ต้องใช้ในการผลิตเคมีเพื่อการเกษตร เช่น ปุ๋ยเคมีและยาปราบศัตรูพืช) ก็จะทำได้ง่าย แต่ถ้าผลิตผลทางการเกษตรที่นำมาผลิตเป็นเชื้อเพลิงเหลวนั้นเป็นของเหลือจากการผลิตอาหาร (เช่นกากน้ำตาลที่ได้จากโรงงานผลิตน้ำตาลที่นำมาผลิตเอทานอล) ตรงนี้ก็อาจถือว่าไม่จำเป็นต้องคิดพลังงานที่ต้องใช้ในส่วนนี้ เพราะถือว่าเป็นการนำของเหลือทิ้งจากกระบวนการผลิตอื่นมาใช้งาน แต่ถ้าปลูกปาล์มน้ำมันเพื่อนำเอาน้ำมันมาใช้เป็นเชื้อเพลิงโดยตรง ก็ควรต้องนำเอาพลังงานตรงส่วนนี้มาใช้ด้วย
ประเด็นเรื่องพื้นที่เพาะปลูกนี้เป็นประเด็นสำคัญที่ทำให้การปลูกพืชเช่นปาล์มน้ำมันถูกโจมตีว่าเป็นตัวการทำลายสิ่งแวดล้อม เพราะเกี่ยวข้องกับการเผาป่าเพื่อนำเอาพื้นที่มาปลูกปาล์มน้ำมัน เช่นที่เกิดในประเทศอินโดนีเซียและส่งผลให้หมอกควันจากไฟไหม้นั้นลอยมาถึงภาคใต้ของประเทศไทย ดังนั้นแหล่งที่มาของพืชจึงควรนำมาพิจารณาด้วย
วิธีการเก็บเกี่ยวก็สามารถส่งผลให้เกิดมลพิษทางอากาศได้สูง ที่เห็นชัดคือกรณีของอ้อย (ที่เราเอามาผลิตเป็นน้ำตาลเพื่อการบริโภคและเอามาผลิตเอทานอล) เนื่องจากใบอ้อยจะมีความคมมาก ดังนั้นเพื่อให้สะดวกในการเก็บเกี่ยว เกษตรกรก็จะใช้การเผาไร่อ้อย คือเผาใบอ้อยทิ้งไปก่อน ให้เหลือแต่ต้น แล้วจึงค่อยให้แรงงานเข้าไปเก็บเกี่ยว ผลที่ตามมาที่เห็นชัดก็คือฝุ่นขนาดเล็กที่สามารถลอยข้ามแดนได้ไกล และค้างในอากาศได้เป็นเวลานาน ดังที่ประเทศเราประสบกันในช่วงหลายปีที่ผ่านมานี้ (และยังมี CO2 ในปริมาณมากที่ปลดปล่อยออกมาจากการเผาด้วย)
ขนาดพื้นที่ที่ทำการเพาะปลูก และระยะทางจากแหล่งเพาะปลูกมายังโรงงานแปรสภาพก็เป็นปัจจัยสำคัญในการกำหนดว่าการปลูกพืชพลังงานนั้นทำให้เกิดการปลดปล่อย CO2 เนื่องจากการขนส่งมากน้อยเท่าใด ในบางประเทศเช่นมาเลเซียและอินโดนีเซียนั้น มีแปลงเพาะปลูกที่ต่อเนื่องเป็นแปลงเดียวขนาดใหญ่และมีโรงงานผลิตน้ำมันปาล์มอยู่ในแปลงเพาะปลูกนั้น ทำให้ประหยัดค่าขนส่ง (ซึ่งก็เป็นการลดการปลดปล่อย CO2) ผลปาล์มมายังโรงงาน และยังสามารถใช้ทางใบปาล์มและต้นปาล์มที่หมดอายุแล้วร่วมกับกะลาปาล์ม (ผลปาล์มที่ผ่านการสกัดน้ำมันแล้ว) และทะลายปาล์มเปล่า มาใช้เป็นเชื้อเพลิงเพื่อผลิตความร้อนใช้ในโรงงานได้ แต่ในกรณีของบ้านเรานั้นจะเรียกว่าต่างคนต่างปลูก แล้วต่างคนก็ต่างขนเฉพาะทะลายปาล์มที่เก็บเกี่ยวได้ไปส่งยังโรงงานที่ตั้งอยู่ห่างออกไป ดังนั้นปัจจัยเรื่องค่าขนส่ง (ซึ่งส่งผลโดยตรงต่อปริมาณ CO2 ที่ปลดปล่อยออกมา) จึงมีบทบาทสำคัญในการคิดปริมาณพลังงานสุดท้ายที่ได้
สิ่งหนึ่งที่หลีกเลี่ยงไม่ได้ในการปลูกพืชเพื่อผลิตเป็นเชื้อเพลิงคือการต้องใส่ปุ๋ย (เพราะพืชมีการดึงเอาแร่ธาตุออกจากดินตลอดเวลา และแร่ธาตุนั้นก็ติดไปกับผลิตผลทางการเกษตรที่นำไปแปรรูป) และปุ๋ยเคมีก็เป็นสิ่งหนึ่งที่ใช้กันอย่างแพร่หลาย ผลกระทบต่อสิ่งแวดล้อมอย่างหนึ่งที่ติดตามมาก็คือการที่ปุ๋ยเคมีนั้นไหลลงสู่แหล่งนั้น เช่นลำคลองและแม่น้ำต่าง ๆ เมื่อไหลออกสู่ทะเลก็ทำให้สาหร่ายบริเวณปากแม่น้ำเจริญเติบโตมากอย่างรวดเร็ว ในช่วงกลางวันนั้นสาหร่ายเหล่านี้ช่วยผลิตออกซิเจน แตในเวลากลางคืนนั้นสาหร่ายเหล่านี้จะดึงออกซิเจนออกจากนั้น ทำให้น้ำขาดออกซิเจนจนสัตว์น้ำในบริเวณนั้น (ที่ไม่สามารถหนีออกไปจากบริเวณนั้นได้) ขาดออกซิเจนเสียชีวิต ซึ่งบ้านเราก็มีเหตุการณ์เช่นนี้เกิดเป็นประจำ ปรกติก็คือหลังช่วงที่มีฝนตกหนักและมีน้ำจากแม่น้ำไหลออกสู่ทะเลในปริมาณมาก เพราะฝนที่ตกลงมานั้นจะชะเอาปุ๋ยเคมีลงแหล่งน้ำ ก่อนที่จะไหลรวมกันลงสู่แม่น้ำและออกทะเล
ที่ยกตัวอย่างมานี้ก็เพื่อต้องการจะบอกว่า การที่จะบอกว่าเชื้อเพลิงชนิดใดเป็นเชื้อเพลิงสีเขียว (Green Fuel) นั้น ไม่ควรที่จะดูแค่เพียงว่ามันมาจากพืช แต่ควรต้องพิจารณาโดยเริ่มตั้งแต่การได้มาซึ่งพืชชนิดนั้น (พื้นที่เพาะปลูก การเก็บเกี่ยวและเคมีภัณฑ์ต่าง ๆ เพื่อการเกษตรที่ต้องใช้) ไปจนถึงเชื้อเพลิงสุดท้ายที่ได้ โดยปริมาณพลังงานที่งใช้ในการผลิตเชื้อเพลิงนั้น (E3 + E4) ควรมีค่าน้อยกว่าปริมาณพลังงานสุดท้ายที่ได้จากเชื้อเพลิงที่ได้จากพืชหรือ E1 >> (E3 + E4) (ดูรูปที่ ๒)
ไม่มีความคิดเห็น:
แสดงความคิดเห็น