วันเสาร์ที่ 22 สิงหาคม พ.ศ. 2552

เชื้อเพลิงและการเผาไหม้ (1) : คุณสมบัติทั่วไป MO Memoir : วันพฤหัสบดีที่ ๒๕ กันยายน ๒๕๕๑

เมื่อเอ่ยถึงการเผาไหม้เรามักจะหมายถึงการเกิดเปลวไฟที่เป็นผลจากปฏิกิริยาออกซิเดชันที่มีการคายพลังงานความร้อนสูงและปลดปล่อยพลังงานออกมาในรูปของรังสีความร้อนและแสงช่วงที่ตามองเห็น ปฏิกิริยาคายความร้อนเช่นนี้มีอันตรายอยู่ในตัวมันเองคือพลังงานที่ปลดปล่อยออกมาจะทำให้อุณหภูมิของระบบเพิ่มสูงขึ้น ซึ่งอุณหภูมิที่เพิ่มสูงขึ้นก็จะไปเร่งปฏิกิริยาการปลดปล่อยพลังงานออกมาอีก ซึ่งจะทำให้ปฏิกิริยาคายความร้อนเกิดเร็วมากขึ้นเรื่อย ๆ จนอาจเกิดการระเบิด (explosion) ได้ ในการทำงานในอุตสาหกรรม ถ้าเราไม่ต้องการให้เกิดเหตุการณ์ดังกล่าวก็ต้องหาหนทางป้องกันไม่ให้มันเกิด และถ้าจำเป็นต้องทำให้เกิดก็ต้องทำในภาวะที่เราสามารถควบคุมปฏิกิริยาได้ (กล่าวคือจะให้เริ่มเมื่อไรหรือยุติเมื่อใดก็ได้ และต้องควบคุมอัตราการปลดปล่อยพลังงานได้)

โดยทั่วไปเมื่อกล่าวถึงการติดไฟ ก็มักจะกล่าวถึงสามเหลี่ยมของการติดไฟ
(รูปที่ 1) ที่ประกอบด้วย เชื้อเพลิง (หรือสารรีดิวซ์) สารออกซิไดซ์ และพลังงานกระตุ้น ดังนี้


รูปที่ 1 สามเหลี่ยมของการติดไฟ


ในการหลีกเลี่ยงการเกิดเพลิงไหม้นั้นจะต้องหาทางไม่ให้ทั้ง 3 สิ่งมาอยู่พร้อมหน้ากัน ซึ่งวิธีที่ดีที่สุดคือให้แต่ละสิ่งอยู่แยกจากกัน (เช่นการที่โรงกลั่นน้ำมันเก็บน้ำมันไว้ในถังเก็บน้ำมันที่ไม่มีอากาศ และห้ามนำไฟเข้าใกล้ หรือเชื้อเพลิงเหลวของจรวดที่เก็บสารรีดิวซ์ (เช่นไฮโดรเจนเหลว) และสารออกซิไดซ์ (เช่นออกซิเจนเหลว) ไว้ในถังเก็บแยกจากกัน) แต่สำหรับสารบางตัวนั้นจะมีเชื้อเพลิงและสารออกซิไดซ์อยู่รวมกัน (เช่นดินปืน วัตถุระเบิดต่าง ๆ) ดังนั้นสิ่งที่ต้องหลีกเลี่ยงก็คืออยู่ให้มีพลังงานกระตุ้นอยู่ใกล้ ๆ


เชื้อเพลิงที่เราพบและใช้บ่อยที่สุดคือพวกสารประกอบอินทรีย์ต่าง ๆ (เช่นน้ำมันเชื้อเพลิง น้ำมันพืช ไขมันสัตว์ กระดาษ ไม้ แก๊สธรรมชาติ แก๊สหุงต้ม ) ตัวอย่างของเชื้อเพลิงที่เป็นสารอนินทรีย์ได้แก่ กำมะถัน (S) ไฮดราซีน (H2N-NH2) แก๊สบางชนิดเช่น ไฮโดรเจน (H2) แอมโมเนีย (NH3) ไฮโดรเจนซัลไฟด์ (H2S) คาร์บอนมอนออกไซด์ (CO) เป็นต้น พวกที่เป็นผงโลหะต่าง ๆ เช่นผงของโลหะ แมกนีเซียม อะลูมิเนียม ไทเทเนียม ซึ่งรวมไปถึงตัวเร่งปฏิกิริยาที่เป็นโลหะอยู่บนตัวรองรับต่าง ๆ


สารออกซิไดซ์ที่มีอยู่ทั่วไปและมีมากที่สุดคืออากาศ (พูดอีกอย่างคือออกซิเจนในอากาศ) ตัวอย่างของพวกที่เป็นแก๊สก็ได้แก่ คลอรีน (Cl2) และฟลูออรีน (F2) ตัวอย่างพวกที่เป็นของเหลวได้แก่ ไฮโดรเจนเปอร์ออกไซด์ (H2O2) ออกซิเจนเหลว และตัวอย่างพวกที่เป็นของแข็งได้แก่พวกเกลือของสารประกอบตระกูล คลอเรต (ClO3-) เปอร์แมงกาเนต (MnO4-) ไนเทรต (NO3-) ไดโครเมต (Cr2O7-) เป็นต้น


พลังงานกระตุ้นนั้นอาจมาในรูปแบบของ เปลวไฟ ความร้อน ประกายไฟ (เช่นที่เกิดจากการขัดสี) ประกายไฟฟ้า (จากการปิด-เปิดสวิทช์ หรือความต่างศักย์ที่สูง) แรงกระแทก (จากการตกหล่น การตีโดยแรง) และการแผ่รังสี (จากแสงช่วงตามองเห็น แสงอัลต้าไวโอเล็ต รังสีแกมม่า)


สารประกอบหรือสารผสมบางชนิดนั้นเป็นพวกที่มีสารออกซิไดซ์ (ซึ่งได้แก่ออกซิเจน) อยู่รวมกับสารที่เป็นเชื้อเพลิง โดยการรวมกันนั้นอาจอยู่ในรูปที่สารที่เป็นเชื้อเพลิงกับสารออกซิไดซ์รวมอยู่ในโมเลกุลเดียวกัน ตัวอย่างสารพวกนี้ได้แก่วัตถุระเบิดต่าง ๆ เช่น ไตรไนโตรโทลูอีน (TNT - C6H3(NO2)3) แอมโมเนียมไนเทรต (NH4NO3) ไนโตรกลีเซอรีน (สามารถเตรียมได้จากกลีเซอรีนที่เหลือจากการทำไบโอดีเซล กับกรดไนตริกและกรดกำมะถันที่หาซื้อได้จากร้านเคมีภัณฑ์ทั่วไป เห็นไหมว่าวัตถุดิบสำหรับทำวัตถุระเบิดหาซื้อได้ไม่ยากหรอก แต่เสี่ยงตายเอาเองก็แล้วกันเวลามันทำปฏิกิริยากัน) เซลลูโลสไนเตรท (ใยฝ้าย ใยสำลี + กรดไทตริก) ถ้าอยากรู้จักมากกว่านี้ไปหาอ่านเอาเองจากเวป wikipedia ตัวอย่างพวกที่เป็นการผสมเข้าด้วยกันระหว่างสารที่เป็นเชื้อเพลิงและสารออกซิไดซ์ได้แก่ ดินปืน (ที่มีผงถ่านและกำมะถันเป็นเชื้อเพลิง โดยมีดินประสิว (KNO3) เป็นสารออกซิไดซ์) สารทางด้าน pyrotechnique ที่ใช้ในการทำพลุและดอกไม้ไฟต่าง ๆ การเผาไหม้ของสารในกลุ่มนี้จะแตกต่างไปจากการเผาไหม้ที่ทำให้เกิดเป็นเปลวไฟ และจะขอยกไปกล่าวไว้ในบทความที่เกี่ยวข้องกับการระเบิดที่จะกล่าวถึงต่อไป ในส่วนของบทความนี้จะขอจำกัดไว้ที่การเผาไหม้ที่ทำให้เกิดเป็นเปลวไฟเท่านั้น


ในส่วนต่อไปจะกล่าวถึงนิยามของคำศัพท์ต่าง ๆ ที่เกี่ยวข้องกับการเผาไหม้ของเชื้อเพลิง


ความสามารถในการติดไฟนั้นขึ้นอยู่กับปัจจัยหลายประการที่สำคัญคือการมีสัดส่วนระหว่างเชื้อเพลิงและสารออกซิไดซ์ในปริมาณที่พอเหมาะ สัดส่วนดังกล่าวมักเรียกกันว่า Explosive limit ซึ่งส่วนใหญ่จะเป็นการระบุความเข้มข้นที่เหมาะสมของเชื้อเพลิงในอากาศที่สามารถทำให้เกิดการลุกไหม้ได้อย่างต่อเนื่อง ถ้าหากเชื้อเพลิงมีความเข้มข้นต่ำเกินไป การเผาไหม้ก็จะไม่สามารถเกิดได้ต่อเนื่อง แต่ถ้าเชื้อเพลิงมีความเข้มข้นสูงมากเกินไป การเผาไหม้ก็จะเกิดไม่ได้อีกเพราะมีออกซิเจนไม่พอ ความเข้มข้นต่ำสุดของเชื้อเพลิงที่สามารถทำให้เกิดการเผาไหม้ต่อเนื่องได้เรียกว่า Lower explosive limit ส่วนความเข้มข้นสูงสุดของเชื้อเพลิงที่สามารถทำให้เกิดการเผาไหม้ต่อเนื่องได้เรียกว่า Upper explosive limit สารแต่ละชนิดจะมีช่วงดังกล่าวที่แตกต่างกันและถ้ามีแก๊สอื่นนอกเหนือจากเชื้อเพลิงกับอากาศแล้ว ค่าดังกล่าวก็จะเปลี่ยนแปลงไปด้วย


สารไวไฟ (Flammable or Inflammable substance) ความหมายทั่วไปของสารไวไฟคือสารที่สามารถระเหยจนมีความเข้มข้นของสารนั้นในอากาศอยู่ในช่วง explosive limit ได้ที่อุณหภูมิห้องหรือต่ำกว่า ตัวอย่างของสารเหล่านี้เช่น น้ำมันเบนซิน อีเทอร์ แก๊สปิโตรเลียมเหลว เมทานอล เอทานอล เป็นต้น อีกสิ่งที่ต้องระวังคือคำว่า Flammable และ Inflammable มีความหมายเดียวกันคือติดไฟได้ทั้งคู่ บางคนจะจำว่าในภาษาอังกฤษถ้ามี prefix พวก in- im- ir- ฯลฯ จะให้ความหมายที่ตรงข้ามกันคือ "ไม่" ดังนั้นถ้าคำว่า flammable แปลว่า "ติดไฟ" คำว่า inflammable จะแปลว่า "ไม่ติดไฟ" ซึ่งเป็นความเข้าใจที่ "ผิด"


สารติดไฟได้ (Combustible substance) คือสารที่ในสภาพแวดล้อมปรกติแล้ว จะไม่สามารถก่อให้เกิดไอระเหยที่มีความเข้มข้นสูงมากจนถึง Lower explosive limit ได้ ตัวอย่างของสารพวกนี้เช่น น้ำมันดีเซล น้ำมันก๊าด น้ำมันเตา น้ำมันพืช ไขมันสัตว์ พาราฟินที่ใช้ทำเทียนไข ไม้ กระดาษ ฯลฯ การทำให้สารเหล่านี้ติดไฟได้ต้องมีวิธีการช่วย เช่น ให้ความร้อน (เพิ่มการเกิดไอ) ฉีดพ่นเป็นละอองฝอย (เพิ่มพื้นที่ผิว) การใช้ไส้ตะเกียง (เพิ่มการระเหย) เป็นต้น


เนื่องจากการกำหนดว่าสารใดเป็นสารไวไฟจะใช้อุณหภูมิห้อง (หรืออุณหภูมิสภาพอากาศรอบข้าง) เป็นตัวกำหนด แต่ละประเทศ แต่ละท้องถิ่น หรือต่างฤดูกาลกัน ก็มีอุณหภูมิสภาพอากาศที่แตกต่างกัน ดังนั้นสารที่จัดว่าไม่ใช่สารไวไฟในประเทศที่มีอุณหภูมิอากาศเฉลี่ยหนาวเย็น (เช่นประเทศที่อยู่ใกล้ขั้วโลกเหนือ) แต่เมื่อมาอยู่ในประเทศเขตเส้นศูนย์สูตรก็จะกลายเป็นสารไวไฟได้ (ประเทศในบริเวณใกล้ขั้วโลกเหนือ ยังต้องมีน้ำมันเบนซินสำหรับฤดูร้อน และน้ำมันเบนซินสำหรับฤดูหนาว โดยส่วนผสมจะแตกต่างกัน น้ำมันเบนซินสำหรับฤดูหนาวจะมีองค์ประกอบที่มีความดันไอสูง จะได้ใช้งานได้ในที่ ๆ อุณหภูมิต่ำมาก แต่เมื่อถึงฤดูร้อนจะต้องลงองค์ประกอบเหล่านั้นลง เพราะน้ำมันจะระเหยมากเกินไป)


จุดวาบไฟ (Flash point) คืออุณหภูมิต่ำสุดที่เชื้อเพลิงชนิดหนึ่งระเหยออกมาเป็นไอได้มากพอ (กล่าวอีกนัยหนึ่งคือสูงจนมีความเข้มข้นสูงถึง Lower explosive limit) ซึ่งเมื่อไอระเหยนั้นผสมกับอากาศแล้วและมีเปลวไฟหรือพลังงานไปกระตุ้น จะเกิดการลุกติดไฟขึ้นมาได้ เพื่อให้มองเห็นภาพกลไกการเผาไหม้ ขอให้พิจารณากรณีที่เรานำเอาเชื้อเพลิงเหลวชนิดหนึ่งเทใส่ในภาชนะใบหนึ่ง จะเกิดกลไกต่าง ๆ ดังแสดงไว้ในรูปที่ 2 ข้างล่าง


รูปที่ 2 กลไกการเผาไหม้ของเชื้อเพลิง

เชื้อเพลิงที่อยู่ในภาชนะจะรับความร้อนจากสิ่งแวดล้อม ทำให้ตัวมันเองระเหยกลายเป็นไอสะสมอยู่บนผิวหน้าเชื้อเพลิง ไอที่สะสมอยู่บนผิวหน้าจะผสมเข้ากับอากาศที่อยู่บนผิวหน้า ความเข้มข้นของไอที่อยู่บนผิวหน้าจะขึ้นอยู่กับอุณหภูมิของสิ่งแวดล้อม ถ้าสิ่งแวดล้อมรอบข้างมีอุณหภูมิต่ำ ความเข้มข้นของไอก็จะต่ำ ถ้าสิ่งแวดล้อมรอบข้างมีอุณหภูมิสูง ความเข้มข้นของไอก็จะสูงตามไปด้วย ที่นี้ถ้าเราเอาเปลวไฟแหย่เข้าไปบริเวณผิวหน้าเชื้อเพลิงและถ้าความเข้มข้นของไอเชื้อเพลิงสูงถึง Lower explosive limit ไอผสมของเชื้อเพลิงกับอากาศดังกล่าวก็จะเกิดการลุกติดไฟขึ้น

เปลวไฟที่เกิดขึ้นจะส่งความร้อนกลับไปยังเชื้อเพลิง ความร้อนที่เกิดจากเปลวไฟและความร้อนจากสิ่งแวดล้อมจะทำให้เชื้อเพลิงที่เป็นของเหลวระเหยขึ้นไปทดแทนเชื้อเพลิงที่ถูกเผาไหม้ไป ถ้าอัตราการระเหยสูงมากพอ ปริมาณการระเหยก็จะชดเชยปริมาณที่ถูกเผาไหม้ไป เปลวไฟก็จะลุกไหม้อย่างต่อเนื่องได้ โดยปรกติแล้วที่อุณหภูมิจุดวาบไฟนั้นความร้อนที่เกิดจากเปลวไฟและความร้อนจากสิ่งแวดล้อมยังไม่มากพอที่จะทำให้เชื้อเพลิงระเหยขึ้นไปทดแทนส่วนที่ถูกเผาไหม้ไปได้ทัน เปลวไฟที่เกิดขึ้นจึงเกิดขึ้นเพียงวูบเดียวแล้วก็ดับไป แต่ถ้าเราจุดไฟเมื่ออุณหภูมิของสิ่งแวดล้อม (กล่าวอีกอย่างก็คืออุณหภูมิของเชื้อเพลิงนั่นเอง) สูงมากพอ ความร้อนจากสิ่งแวดล้อมและจากเปลวไฟจะทำให้อัตราการระเหยของเชื้อเพลิงสามารถทดแทนเชื้อเพลิงที่ถูกเผาไปได้ เปลวไฟก็จะลุกไหม้อย่างต่อเนื่อง อุณหภูมิต่ำสุดของเชื้อเพลิงที่สามารถทำให้เกิดการลุกไหม้ได้อย่างต่อเนื่องนี้เรียกว่าจุดติดไฟ (Fire point)

โดยปรกติแล้วอุณหภูมิจุดวาบไฟจะต่ำกว่าอุณหภูมิจุดติดไฟ แต่จัดได้ว่าอยู่ใกล้กัน และเปลวไฟที่เกิดจากลุกไหม้เพียงแค่วูบเดียวก็สามารถทำให้เกิดความเสียหายได้ การระบุความง่ายของเชื้อเพลิงในการลุกไหม้จึงมักใช้อุณหภูมิจุดวาบไฟมากกว่าการใช้อุณหภูมิจุดติดไฟ แต่การวัดอุณหภูมิจุดวาบไฟก็มีปัญหาคือการสะสมของไอเชื้อเพลิงที่อยู่บนผิวหน้าเชื้อเพลิงขึ้นอยู่กับปัจจัยหลายประการด้วยกัน เช่น ขนาดและรูปร่างของภาชนะ ระยะจากผิวหน้าเชื้อเพลิงไปจนถึงขอบบนของภาชนะ ภาชนะนั้นเป็นภาชนะเปิด (open cup) หรือภาชนะปิด (closed cup) อัตราการเพิ่มอุณหภูมิให้กับเชื้อเพลิง ฯลฯ ด้วยเหตุนี้การระบุจุดวาบไฟจึงจำเป็นต้องมีการระบุวิธีการวัดกำกับไปด้วย เช่นประกาศกรมธุรกิจพลังงานเรื่องคุณลักษณะน้ำมันดีเซล ระบุจุดวาบไฟของน้ำมันดีเซลไว้ที่ 52 C เมื่อวัดตามมาตรฐาน ASTM D 93 ของน้ำมันเตาชนิดที่ 1 ถึงชนิดที่ 5 ไว้ที่ 60 C เมื่อวัดตามมาตรฐาน ASTM D93 จุดวาบไฟของน้ำมันก๊าดต้องไม่ต่ำกว่า 38 C เมื่อวัดตามมาตรฐาน ASTM D 56 เป็นต้น

การที่เราสามารถจุดติดไฟสารที่มีอุณหภูมิจุดวาบไฟสูงกว่าอุณหภูมิห้อง (เช่นน้ำมันพืช เทียนไข น้ำมันก๊าด) เป็นผลเนื่องจากการทำงานของไส้ตะเกียงหรือไส้เทียนซึ่งช่วยเพิ่มการระเหยของเชื้อเพลิง (ที่เป็นของเหลว) ด้วยพื้นที่ผิวที่สูงของมัน ตัวอย่างเช่นในกรณีของเทียนไขนั้น เมื่อเราจุดไฟที่ไส้เทียน เปลวไฟจะเผาไหม้ไส้เทียน และความร้อนจากเปลวไฟที่เผาไหม้ไส้เทียนจะไปทำให้เนื้อเทียนหลอมเหลว เนื้อเทียนที่หลอมเหลวนั้นจะถูกดูดซับไต่ไปตามไส้เทียนและระเหยออกมาผสมกับอากาศ ทำให้เกิดการลุกไหม้ได้อย่างต่อเนื่องไปเรื่อย ๆ จนกว่าเนื้อเทียนจะหมด ในกรณีของตะเกียงน้ำมันพืชที่ใช้กันตามวัดหรือศาลเจ้าต่าง ๆ นั้น จะเห็นว่าไฟจะลุกเฉพาะตรงบริเวณไส้ตะเกียงที่ลอยอยู่บนน้ำมันพืชเท่านั้น แต่จะไม่ลุกท่วมผิวน้ำมันพืช (ลองเอาน้ำมันพืชที่บ้านมาจุดไฟเล่นดูก็ได้ จะจุดไฟไม่ติดเว้นแต่มีไส้ตะเกียงช่วย) แต่ถ้าเราเอาเอทานอลหรือน้ำมันเบนซินมาจุด รับรองได้ว่าไฟลุกท่วมทั้งตะเกียงแน่ (เคยคิดเล่น ๆ ว่าถ้าหากมีคนมือบอบแอบถวายเบนซิน 95 (ซึ่งมีสีเหลืองเหมือนน้ำมันพืช) ในรูปของน้ำมันพืช คงมีไฟลุกท่วมทั้งวัดแน่)

สมมุติว่าเราเอาเชื้อเพลิงและอากาศผสมกันในสัดส่วนที่สามารถระเบิดได้ แล้วค่อย ๆ เพิ่มอุณหภูมิของส่วนผสมนั้นให้สูงขึ้นเรื่อย ๆ (โดยไม่ได้ใช้เปลวไฟหรือประกายไฟ) เมื่อส่วนผสมดังกล่าวมีอุณหภูมิสูงจนถึงจุดหนึ่ง ส่วนผสมดังกล่าวจะเกิดการระเบิดได้ด้วยตนเองโดยที่ไม่ได้มีเปลวไฟหรือประกายไฟเป็นตัวกระตุ้น อุณหภูมิดังกล่าวเรียกว่าอุณหภูมิจุดระเบิดได้ด้วยตนเอง (Autoignition temperature) อุณหภูมิดังกล่าวมีความสำคัญในหลาย ๆ ด้าน เช่น การออกแบบโรงงาน เชื้อเพลิงสำหรับเครื่องยนต์เบนซิน ตัวอย่างเช่นถ้าเราต้องการเดินท่อลำเลียง hexane (C6H14) ในโรงงาน ซึ่ง hexane มี autoignition temperature ที่ประมาณ 234 C ถ้าหาก hexane เกิดการรั่วไหลและไอระเหยของเฮกเซนไปสัมผัสกับท่อไอน้ำที่อยู่ข้างเคียงที่มีอุณหภูมิผิวท่อสูงกว่า 234 C ไอระเหยของเฮกเซนก็จะเกิดการระเบิดได้ ในกรณีของเครื่องยนต์เบนซินนั้น autoignition temperature จะสัมพันธ์กับค่าออกเทนของน้ำมัน

อุณหภูมิ flash point กับ autoignition temperature เป็นคนละอุณหภูมิกัน มีความหมายต่างกัน แต่ก็ยังมีคนไม่น้อยที่สับสนกับค่าทั้งสอง เคยเห็นมีคนถกเถียงทางเวปบอร์ดว่าระหว่าง methane (CH4) กับน้ำมันดีเซลเชื้อเพลิงตัวไหนไวไฟมากกว่ากัน โดยต่างฝ่ายต่างก็ยกตัวเลขอุณหภูมิมาถกเถียงกัน แต่ตัวเลขอุณหภูมิที่ยกมานั้นเป็นคนละเรื่องกัน เช่นฝ่ายหนึ่งบอกว่า methane ปลอดภัยกว่าดีเซลเพราะมีเทนจะระเบิดที่ 537 C (autoignition temperature ของ methane) ในขณะที่น้ำมันดีเซลจะติดไฟที่อุณหภูมิ 60 C (flash point ของดีเซล) ฝ่ายที่บอกว่าดีเซลปลอดภัยกว่าก็ยกตัวเลขว่า methane ติดไฟที่อุณหภูมิ -221 C (flash point ของ methane โดยจุดเดือดของ methane อยู่ที่ -164 C) ในขณะที่น้ำมันดีเซลติดไฟที่ประมาณ 200-220 C (autoignition temperature ของน้ำมันดีเซล) สุดท้ายต่างฝ่ายต่างไม่ยอมกันและก็เลิกรากันไป

ความถ่วงจำเพาะ (Specific gravity - sp.gr.) เป็นการเปรียบเทียบความหนาแน่นของเชื้อเพลิงกับน้ำ (ในกรณีที่เป็นเชื้อเพลิงเหลวหรือแข็ง) หรือกับอากาศ (ในกรณีที่เป็นแก๊ส) เชื้อเพลิงใดมีความหนาแน่นมากกว่า 1 แสดงว่าเชื้อเพลิงนั้นหนักกว่าน้ำ/อากาศ และเชื้อเพลิงใดที่มีความหนาแน่นน้อยกว่า 1 แสดงว่าเชื้อเพลิงนั้นเบากว่าน้ำ/อากาศ แก๊สที่เบากว่าอากาศ เช่นไฮโดรเจนและมีเทน เมื่อเกิดการรั่วไหลในบริเวณที่ "เปิดโล่ง" จะมีแนวโน้มที่จะฟุ้งกระจายออกไป โอกาสที่จะเกิดการสะสมจนมีความเข้มข้นจนถึง Lower explosive limit จึงต่ำ แต่ถ้าเป็นการรั่วไหลในบริเวณที่มีการปิดล้อมหรือถ่ายเทอากาศไม่ดี เช่นในห้องที่ไม่มีการระบายอากาศ หรือในกระโปรงท้ายรถยนต์ ก็สามารถที่จะสะสมจนมีความเข้มข้นสูงมากพอที่จะเกิดการระเบิดได้ ถ้าแก๊สนั้นหนักกว่าอากาศมาก โอกาสที่แก๊สนั้นจะฟุ้งกระจายผสมกับอากาศอย่างทั่วถึงก็จะยาก โอกาสที่จะเกิดการระเบิดก็จะน้อยไปด้วย พวกที่อันตรายคือพวกที่หนักกว่าอากาศไม่มากนัก เช่นพวก โพรเพน บิวเทน แก๊สพวกนี้หนักกว่าอากาศเล็กน้อย ทำให้ไม่ฟุ้งกระจายหายไปจนหมด แต่ก็ฟุ้งกระจายได้พอดีที่จะผสมเข้ากับอากาศได้อย่างทั่วถึง และโดยเฉพาะอย่างยิ่งแก๊สพวกที่มักถูกเก็บในถังที่มีความดันไม่มากนัก เมื่อเกิดการรั่วไหลก็จะผสมเข้ากับอากาศได้อย่างพอเหมาะ โอกาสที่จะเกิดการระเบิดก็จะสูง

ในกรณีที่เป็นเชื้อเพลิงเหลวนั้น พวกที่มีอันตรายมากคือพวกที่ "เบากว่าน้ำและไม่ละลายน้ำ" เชื้อเพลิงหลายชนิดโดยตัวมันเองจะติดไฟยาก แต่ถ้าหกลอยอยู่บนผิวหน้าน้ำจะติดไฟได้ง่ายกว่าเดิมมากและมีอันตรายมากกว่าเดิมมาก เพราะเชื้อเพลิงนั้นจะแผ่กระจายเป็นฟิล์มบาง ๆ ไปบนผิวหน้าน้ำซึ่งเป็นการเพิ่มพื้นที่ผิวการระเหยได้มาก และพวกนี้ไม่สามารถใช้น้ำดับได้ เพราะน้ำจะจมลงไปใต้เชื้อเพลิง เคยเห็นนักเรียนถามคำถามทางอินเทอร์เนตว่าทำไมน้ำมันจึงลอยน้ำ มีคนตอบว่าเป็นเพราะน้ำมันเบากว่าน้ำ ซึ่งจะว่าไปแล้วคำตอบดังกล่าวไม่ถูกต้องสมบูรณ์ ที่ถูกต้องสมบูรณ์คือน้ำมันเบากว่าน้ำและไม่ละลายน้ำ เพราะถ้าหากละลายน้ำได้ (เช่นแอลกอฮอล์โมเลกุลเล็ก ๆ) พวกนี้จะผสมเข้าเป็นเนื้อเดียวกันกับน้ำและใช้นำดับไฟได้

อันตรายอย่างหนึ่งของน้ำกับน้ำมันคือ น้ำมีจุดเดือดต่ำกว่าน้ำมันแต่มีความหนาแน่นสูงกว่า
(จุดเดือดคือจุดที่ของเหลวมีความดันไอบนผิวหน้าของเหลวเท่ากับความดันที่อยู่บนผิวหน้า) ดังนั้นเมื่อมีน้ำกับน้ำมันอยู่ด้วยกัน น้ำจะอยู่ชั้นล่างโดยมีน้ำมันลอยอยู่ชั้นบน เมื่ออุณหภูมิสูงมากพอก็จะทำให้น้ำเดือดกลายเป็นไอดันให้น้ำมันกระเด็นออกมา ซึ่งเป็นปรากฏการณ์ที่เราเห็นเวลาเราตั้งกระทะจะทอดอาหาร ถ้ากระทะนั้นมีน้ำอยู่และเราใส่น้ำมันลงไปก่อนกระทะแห้ง เมื่อน้ำเดือดจะทำให้น้ำมันกระเด็นออกมา ในอุตสาหกรรมก็ต้องระวังปัญหานี้เวลาที่เกิดไฟไหม้แทงค์เก็บน้ำมัน (ดูรูปที่ 3 ข้างล่างประกอบ) เพราะเมื่อเกิดไฟไหม้จะต้องทำการฉีดน้ำเลี้ยงเอาไว้ไม่ให้โครงสร้างพังหรือเพลิงไหม้แผ่กระจายออกไป น้ำที่ฉีดเข้าไปในแทงค์เก็บน้ำมันจะลงไปสะสมยังก้นแทงค์ เมื่อเวลาผ่านไปเรื่อย ๆ น้ำมันที่อยู่บนผิวน้ำจะร้อนขึ้นเรื่อย ๆ ในขณะที่ระดับน้ำมันลดลง ความดันที่กดอยู่บนผิวหน้าน้ำคือความดันอากาศบวกกับความสูงของน้ำมันซึ่งจะลดลงเรื่อย ๆ เพราะระดับความสูงของน้ำมันลดลงจากการเผาไหม้(1) และเมื่อใดก็ตามที่อุณหภูมิน้ำที่อยู่ก้นแทงค์สูงมากพอจนทำให้น้ำเดือดได้ ไอน้ำที่เกิดขึ้นก็จะดันให้น้ำมันที่กำลังลุกติดไฟอยู่พุ่งล้นออกมานอกแทงค์ สามารถก่อให้เกิดอันตรายกับพนักงานดับเพลิงที่อยู่รอบ ๆ แทงค์นั้นได้ ปรากฏการณ์นี้เรียกว่า "การเดือดล้น (Slop over)"


รูปที่ 3 การเดือดของน้ำที่อยู่ใต้ชั้นน้ำมัน Memoir ฉบับนี้ยาวมาถึง 5 หน้าแล้ว คงจะพอแค่นี้ก่อน ฉบับต่อไปจะเล่าถึงการลุกติดไฟและการระเบิด

อุณหภูมิจุดเดือดของของเหลวคืออุณหภูมิที่ทำให้ความดันไอของของเหลวเท่ากับความดันที่อยู่เหนือผิวของเหลว ในกรณีของการต้มน้ำในบรรยากาศปรกติ ความดันเหนือผิวบนของน้ำคือ 1 atm อุณหภูมิที่ทำให้น้ำมีความดันไอเท่ากับ 1 บรรยากาศคือ 100ºC แต่ในกรณีที่มีน้ำมันลอยอยู่เหนือผิวบนของน้ำ ความดันที่อยู่เหนือผิวบนของน้ำคือ (1 atm + ความสูงน้ำมันที่อยู่เหนือผิวน้ำ) ในขณะที่ไฟลุกไหม้น้ำมันที่อยู่เหนือผิวน้ำไปเรื่อย ๆ ความสูงของน้ำมันที่อยู่เหนือผิวบนของน้ำจะลดลง ทำให้ความดันที่อยู่เหนือผิวบนของน้ำลดลง แต่อุณหภูมิของน้ำจะเพิ่มสูงขึ้นเรื่อย ๆ

(แก้ไข ศุกร์ ๒๓ ตุลาคม ๒๕๕๒)

ไม่มีความคิดเห็น: