วันเสาร์ที่ 25 พฤศจิกายน พ.ศ. 2566

การละลายของเอทานอลในไฮโดรคาร์บอน MO Memoir : Saturday 25 November 2566

โครงสร้างโมเลกุลของเอทานอลนั้นมีทั้งส่วนที่มีขั้วที่แรงคือหมู่ -OH และส่วนที่ไม่มีขั้วคือหมู่ -C2H5 ด้วย ด้วยการที่ส่วนที่ไม่มีขั้วมีขนาดเล็กจึงทำให้เอทานอลละลายในน้ำได้ในทุกสัดส่วน ที่มีปัญหามากกว่าน่าจะเป็นการละลายในตัวทำละลายที่ไม่มีขั้วเช่นไฮโดรคาร์บอน

ในกรณีของพวก "light hydrocarbon" (พวกที่มีจุดเดือดต่ำ) นั้นพบว่าเอทานอลที่ปราศจากน้ำ (absolute ethanol หรือ anhydrous ethanol) สามารถละลายได้ในทุกสัดส่วน แต่ในกรณีของเอทานอลที่มีน้ำผสมอยู่ด้วยนั้น (เช่นเอทานอลที่เราใช้ในการผลิตแก๊สโซฮอล์ที่มีน้ำผสมอยู่ได้ไม่เกิน 0.3 wt% หรือถังเก็บน้ำมันแก๊สโซฮอล์ที่มีน้ำปนเปื้อน) พบว่า การละลายเข้าเป็นเนื้อเดียวกันระหว่าง น้ำ + เอทานอล + ไฮโดรคาร์บอนนั้น ยังขึ้นกับรูปร่างโมเลกุลของไฮโดรคาร์บอนด้วยว่าเป็นชนิดสายโซ่หรืออะโรมาติก

รูปที่ ๑ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + นอร์มัลเฮปเทน (n-Heptane (C7H16) นำมาจากบทความเรื่อง "Vapour–liquid–liquid and vapour–liquid equilibrium of the system water + ethanol + heptane at 101.3 kPa", Vicente Gomis, Alicia Font, Maria Dolores Saquete, Fluid Phase Equilibria, 248 (2006) 206-210. หน่วยของแต่ละแกนในรูปนี้คือ mol%

รูปที่ ๑ เป็นเฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + นอร์มัลเฮปเทน ก่อนอื่นขอให้ข้อมูลในการอ่านกราฟแบบนี้สำหรับผู้ที่ไม่เคยใช้กราฟแบบนี้มาก่อน แกนนอนในรูปที่ ๑ ที่อยู่ระหว่างคำ Water ทางด้านซ้าย กับ n-Heptane ทางด้านขวาคือสัดส่วนน้ำในสารละลาย ตัวเลข 100 ที่อยู่ทางฝั่งคำ "Water" คือมีน้ำเพียงอย่างเดียว (น้ำบริสุทธิ์) ตัวเลข 0 ที่อยู่ทางฝั่งคำ "n-Heptane" คือสารละลายที่ไม่มีน้ำเลย (มีแต่นอร์มัลเฮปเทน) แกนทางด้านซ้าย (เริ่มจาก 0 ที่คำ "Water' ไปจนถึง 100 ที่คำ "Ethanol") คือสัดส่วนเอทานอลในสาละลาย และในทำนองเดียวกันแกนทางด้านขวา (เริ่มจาก 0 ที่คำ "Ethanol' ไปจนถึง 100 ที่คำ "n-Heptane") คือสัดส่วนนอร์มัลเฮปเทนในสารละลาย ทุก ๆ องค์ประกอบที่อยู่บนแกนทางด้านขวาคือสารละลายผสมระหว่างเอทานอลกับนอร์มัลเฮปเทนที่ไม่มีน้ำปนอยู่เลย

ส่วนที่เป็นโค้งรูปโดมอยู่ในรูปสามเหลี่ยมเป็นเส้นแบ่งระหว่างส่วนผสมที่ละลายเข้าเป็นเนื้อเดียวกัน (ส่วนที่อยู่เหนือเส้นรูปโดม) และส่วนผสมที่มีการแยกออกเป็นสองเฟส (ส่วนที่อยู่ใต้เส้นรูปโดม) เส้นตรงสีส้มที่ลากอยู่ใต้โค้งรูปโดมเรียกว่า "Tie line" เป็นเส้นที่เป็นตัวบอกว่าในกรณีของส่วนผสมที่มีการแยกเป็นสองเฟสนั้น แต่ละเฟสจะมีองค์ประกอบอะไรบ้าง โดยจุดทางด้านซ้ายองค์ประกอบหลักเป็นเฟสน้ำ + เอทานอล โดยมีนอร์มัลเฮปเทนเป็นส่วนน้อย ส่วนจุดทางด้านขวาองค์ประกอบหลักจะเป็น เอทานอล + นอร์มัลเฮปเทน โดยมีน้ำเป็นส่วนน้อย

รูปที่ ๒ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + เฮกเซน (Hexane C6H14) รูปนี้นำมาจากบทความที่ปรากกฏอยู่ในรูปแล้ว หน่วยของแต่ละแกนในรูปนี้คือmol fraction หรือสัดส่วนโมล ซึ่ง mole fraction x 100 = mol%

รูปที่ ๓ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + เพนเทน (Pentane C5H12) สเกลของแต่ละแกนในรูปนี้คือ mol fraction รูปนี้นำมาจากบทความเดียวกันกับรูปที่ ๒

รูปที่ ๔ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + ไซโคลเฮกเซน (Cyclohexane C6H12)สเกลของแต่ละแกนในรูปนี้คือ mol fraction

รูปที่ ๒ และ ๓ เป็นเฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + เฮกเซน/เพนเทน ทั้งนอร์มัลเฮปเทน, เฮกเซน และเพนเทน ต่างเป็น aliphatic hydrocarbon (ไฮโดรคาร์บอนที่มีโครงสร้างแบบเส้น) เหมือนกัน ต่างกันที่จำนวนอะตอมคาร์บอน พึงสังเกตตำแหน่งจุดสูงสุดของโค้งรูปโดม จะเห็นว่าเมื่อโมเลกุลไฮโดรคาร์บอนมีขนาดเล็กลง จุดสูงสุดของโค้งรูปโดมจะลดต่ำลง แสดงให้เห็นว่าช่วงสารละลายผสมที่ประกอบด้วย น้ำ + เอทานอล + ไฮโดรคาร์บอน ละลายเข้าเป็นเนื้อเดียวกันได้นั้นมีช่วงกว้างขึ้น

รูปที่ ๔ เป็นเฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + ไซโคลเฮกเซน ที่เป็นไฮโดรคาร์บอนรูปร่างโมเลกุลเป็นวงแหวนอิ่มตัว (cycloaliphatic) ถ้าเทียบกับกรณีของเฮกเซนแล้วจะเห็นว่าตำแหน่งความสูงของโค้งรูปโดมนั้นอยู่ในระดับใกล้เคียงกัน (อนึ่ง ความสูงของโค้งรูปโดมนั้นยังขึ้นกับอุณหภูมิที่ทำการทดลอง กล่าวคือที่อุณหภูมิสูงขึ้นการละลายเข้าเป็นเฟสเดียวกันจะเกิดได้ดีขึ้น ทำให้ความสูงของโค้งรูปโดมลดต่ำลง)

รูปที่ ๕ เป็นเฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + โทลูอีน (C6H5-CH3) โครงสร้างโมเลกุลของโทลูอีนนั้นเป็นวงแหวนอะโรมาติกที่มีหมู่เมทิล (-CH3) เกาะหนึ่งหมู่ ในกรณีนี้พึงสังเกตว่าความสูงของโดมในวงแหวนลดต่ำลงไปอีก นั่นแสดงว่าช่วงสัดส่วนที่สารทั้งสามสามารถละลายเข้าเป็นเนื้อเดียวกันได้นั้นกว้างขึ้นไปอีก

รูปที่ ๕ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + โทลูอีน นำมาจากบทความเรื่อง "Homogeneity of the water + ethanol + toluene azeotrope at 101.3 kPa", Vicente Gomis, Alicia Font, Maria Dolores Saquete, Fluid Phase Equilibria, 266 (2008), 8-13. สเกลของแต่ละแกนในรูปนี้คือ mol%

แม้ว่าโครงสร้างอะโรมาติกของโทลูอีนและวงแหวนของไซโคลเฮกเซนนั้นจะมีจำนวนอะตอมคาร์บอน 6 อะตอมเหมือนกัน แต่รูปร่างแตกต่างกัน กล่าวคือโครงสร้างวงแหวนอะโรมาติกมีความแบนราบในขณะที่โครงสร้างของไซโคลเฮกเซนนั้นไม่ใช่

กราฟทั้งหมดที่แสดงมาข้างต้นแสดงให้เห็นว่ารูปร่างโครงสร้างโมเลกุลของไฮโดรคาร์บอนนั้นส่งผลต่อการผสมเข้าเป็นเนื้อเดียวกันของ น้ำ + เอทานอล + ไฮโดรคาร์บอน ดังนั้นการนำเอทานอลมาผสมกับไฮโดรคาร์บอนเพื่อผลิตแก๊สโซฮอล์นั้นจึงต้องเลือกสัดส่วนผสมที่ทำให้สารละลายนั้นรวมเป็นเนื้อเดียวกันโดยไม่มีการแยกเฟส

น้ำมันเบนซิน (หรือที่ภาษาอังกฤษเรียกว่า gasoline) เป็นสารผสมที่ประกอบด้วยไฮโดรคาร์บอนหลากหลายชนิด สำหรับบ้านเรานั้นกำหนดให้มีสารประกอบอะโรมาติก (ทุกชนิดรวมกัน) ไม่เกิน 35 vol% (ร้อยละโดยปริมาตร) และกำหนดจุดเดือดเอาไว้ว่า 90 vol% ต้องระเหยที่อุณหภูมิไม่เกิน 170ºC และจุดที่ระเหยจนหมดต้องไม่เกิน 200ºC ในกรณีของน้ำมันแก๊สโซฮอล์นั้นกำหนดส่วนผสมด้วยหน่วย "vol%"

รูปที่ ๖ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + แก๊สโซลีน นำมาจากบทความเรื่อง "Bioethanol fule quality and downstream marketting constraints" โดย S. Gunawardena, Proceeding of SAARC Regional Training on Biofuels, 22-26 September 2008. สเกลของแต่ละแกนในรูปนี้คือ wt%

รูปที่ ๖ เป็นเฟสไดอะแกรมของ น้ำ + เอทานอล + น้ำมันเบนซิน โดยหน่วยสัดส่วนผสมที่เขาใช้นั้นคือ "wt%" (หมายเหตุ : เอทานอลมีความหนาแน่นสูงกว่าน้ำมันเบนซินอยู่เล็กน้อย) ถ้าดูตามรูปนี้ก็จะเห็นว่าเราสามารถผสมเอทานอลกับน้ำมันเบนซินด้วยสัดส่วนใดก็ได้

รูปที่ ๗ เป็นเฟสไดอะแกรมของ น้ำ + เอทานอล + น้ำมันเบนซิน ที่อุณหภูมิต่าง ๆ (หน่วยสัดส่วนผสมที่ใช้ในกราฟนี้คือ "vol%" (คนละหน่วยกับรูปที่ ๑-๕) พึงสังเกตว่าเมื่ออุณหภูมิลดต่ำลง บริเวณสัดส่วนผสมที่ยังทำให้สารละลายยังคงเป็นเนื้อเดียวกันนั้นจะแคบลง ดังนั้นการเลือกสัดส่วนผสมจึงต้องคำนึงถึงช่วงอุณหภูมิอากาศที่นำน้ำมันไปใช้งานด้วย

รูปที่ ๗ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + น้ำมันเบนซิน (แก๊สโซลีน) ที่อุณหภูมิต่างกัน นำมาจากบทความเรื่อง "Gasoline made with hydrous ethanol", Orlando Volpato Filho, Conference Paper, September 2008 (https://www.researchgate.net/publication/309564235) สเกลของแต่ละแกนในรูปนี้คือ vol%

เดคเคน มีจุดเดือดอยู่ที่ประมาณ 174ºC (อยู่ในช่วง 10% สุดท้ายของน้ำมันเบนซิน) เส้นสีเขียวในรูปที่ ๘ เป็นเส้นแบ่งสัดส่วนความเข้มข้นที่ละลายเป็นเนื้อเดียวกันและแยกเป็นสองเฟสของสารผสม น้ำ + เอทานอล + เดคเคน (หน่วยเป็น mol%) พึงสังเกตว่าช่วงองค์ประกอบที่สารผลมสามารถละลายเป็นเนื้อเดียวกันได้นั้นจะแคบลงไปอีก โดยเฉพาะแนวแกนด้านขวาที่เป็นส่วนผสมระหว่างเอทานอลกับเดคเคน ที่โค้งรูปโดมนั้นแทบจะแนบไปกับแนวแกนดังกล่าว ซึ่งแสดงให้เห็นว่าถ้ามีน้ำผสมอยู่เพียงปริมาณเล็กน้อยก็จะเกิดปัญหาการแยกเฟสได้ทันที (ต้องไม่ลืมว่าเอทานอลที่เอามาผสมกับน้ำมันเพื่อผลิตแก๊สโซฮอล์นั้นจะมีน้ำปนอยู่เล็กน้อย ยิ่งผสมเอทานอลมากขึ้น สัดส่วนน้ำในสารผสมก็จะมากขึ้นไปด้วย)

รูปที่ ๘ เฟสไดอะแกรมของสารละลาย น้ำ + เอทานอล + เดคเคน (Decane C10H22) /ออกทานอล (Octanol C8H15-OH) (หน่วยเป็น mol%) ในรูปนี้มุมซ้ายล่างของสามเหลี่ยมคือจุด เอทานอล 100%, มุมขวาล่างคือ เดคเคน/ออกทานอล 100% และมุมบนคือเอทานอล 100%

ปัญหาเรื่องการผสมเอทานอลเข้ากับไฮโดรคาร์บอนที่มีขนาดใหญ่ขึ้นไปอีกนั้นเห็นได้ชัดเมื่อมีความต้องการเอาเอทานอลไปผสมกับน้ำมันดีเซล ซึ่งจำเป็นต้องมีการเติมสารลดแรงตึงผิว (surfactant) เพื่อให้ละลายเข้าเป็นเนื้อเดียวกันและละลายได้มากขึ้น ในขณะที่ในกรณีของน้ำมันเบนซินนั้นไม่จำเป็นต้องใช้ ข้อดีของการผสมเอทานอลในน้ำมันดีเซลคือทำให้การเผาไหม้สมบูรณ์ขึ้นเนื่องจากโมเลกุลเอทานอลมีขนาดเล็กและมีออกซิเจนอยู่ในตัว แต่ก็มีช้อเสียคือไปทำให้เลขซีเทนของน้ำมันดีเซลลดต่ำลง (รูปที่ ๙)


รูปที่ ๙ เลขซีเทนของน้ำมันดีเซลเมื่อผสมเอทานอลด้วยอัตราส่วนต่าง ๆ กัน

แม้เอทานอลจะมีเลขออกเทนที่สูงแต่มีพลังงานความร้อนที่ต่ำกว่าไฮโดรคาร์บอน เพื่อที่จะดึงประโยชน์จากเลขออกเทนที่สูงของเอทานอลจึงควรต้องใช้เครื่องยนต์ที่มีอัตราส่วนการอัดที่สูงขึ้น แต่นั่นจะไปก่อให้เกิดปัญหาเมื่อต้องใช้น้ำมันเบนซินเป็นเชื้อเพลิง (เพราจะมันจะน็อคได้ง่ายขึ้น) สำหรับรถยนต์ทั่วไปนั้นอัตราส่วนการอัดของเครื่องยนต์ที่ติดรถมานั้นจะคงที่ ดังนั้นอีกทางเลือกที่ทำได้คือการเปลี่ยนองศาการจุดระเบิด ดังเช่นผลการทดลองในรูปที่ ๑๐ ที่เปรียบเทียบระหว่างน้ำมันเบนซินที่จุดระเบิดที่ 9 BTDC แต่ถ้าใช้แก๊สโซฮอล์ที่มีสัดส่วนเอทานอลผสม 50% จะต้องจุดระเบิดเร็วขึ้นที่ 12-15 องศา

แต่เครื่องยนต์ที่บทความนี้ใช้เป็นเครื่องยนต์ทดสอบชนิดลูกสูบเดียว รอบเครื่องยนต์ที่เห็นจึงจัดว่าสูงอยู่

 

รูปที่ ๑๐ แรงบิดและกำลังที่ได้จากการจุดระเบิดที่องศาการจุดระเบิดต่างกันระหว่างน้ำมันเบนซิน (แก๊สโซลีน) และแก๊สโซฮอล์ที่มีเอทานอลผสม 50% บทความได้ระบุว่าสัดส่วนผสมเป็นหน่วยใด แต่เข้าใจว่าน่าจะเป็นโดยปริมาตร BTDC ย่อมาจาก Before Top Dead Centre ที่แปลว่าก่อนถึงจุดศูนย์ตายบน ลูกสูบเคลื่อนที่ลง-ขึ้นหนึ่งรอบเพลามีการหมุน 360 องศา 9 BTDC ก็คือเพลาแล้ว 361 องศา ขาดอีก 9 องศาลูกสูบก็จะเคลื่อนที่ขึ้นถึงจุดสูงสุด

วันจันทร์ที่ 20 พฤศจิกายน พ.ศ. 2566

การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๙ เครื่องสลายนิ่วในไตด้วยคลื่นกระแทก (Lithotripter) MO Memoir : Monday 20 November 2566

ในช่วงท้ายของ workshop ที่จัดโดยวิทยากรจากสหรัฐอเมริกาเมื่อวันพฤหัสบดีที่ ๙ พฤศจิกายน ทางวิทยากรได้มีการเน้นถึงความสำคัญของการพิจารณาผู้รับสินค้าที่ใช้ได้สองทางว่าเป็นผู้รับที่เหมาะสมหรือไม่ โดยได้มีการกล่าวถึง "เครื่องสลายนิ่วในไตด้วยคลื่นกระแทก (Lithotripter)" โดยบอกว่ามีชิ้นส่วนที่เกี่ยวข้องกับ "การจุดระเบิดอาวุธนิวเคลียร์" เป็นส่วนหนึ่งของเครื่องดังกล่าว ก็เลยลองไปค้นดูว่ามันคือชิ้นส่วนไหน

แต่ก่อนอื่นเราลองมาทำความรู้จักหลักการทำงานของคลื่นนี้ดูก่อน

รูปที่ ๑ เป็นตัวอย่างหนึ่งของเครื่องสลายนิ่วในไตด้วยคลื่นกระแทก การทำให้เกิดคลื่นกระแทกอาศัยขั้วไฟฟ้า 2 ขั้ว (22) ที่วางห่างกันเล็กน้อย (คือไม่สัมผัสกัน) ตรงนี้เรียกว่า spark gap (24) เมื่อมีความต่างศักย์ที่สูงมากพอก็จะเกิดประกายไฟกระโดดข้ามจากขั้วหนึ่งไปยังอีกขั้วหนึ่งแบบเดียวกับหัวเทียนที่ใช้กับรถยนต์ ในกรณีของเครื่องนี้ตัว spark gap จะติดตั้งอยู่ภายในผนังสะท้อนคลื่นรูปทรงวงรี (ellipsoidal reflector - 14) โดยจะวางตัวที่ตำแหน่งโฟกัสตำแหน่งหนึ่งของวงรี โดยในตัวผนังสะท้อนนี้จะบรรจุน้ำเอาไว้เต็ม พลังงานความร้อนปริมาณมากที่เกิดจากประกายไฟในผิวน้ำในเวลาอันสั้นจะทำให้เกิดคลื่นแทกแผ่ออกไปจากจุดโฟกัส 24 ทุกทิศทาง และเมื่อคลื่นที่แผ่ออกไปนั้นไปกระทบกับผนังสะท้อนคลื่น (14) ก็จะเกิดการสะท้อนตรงไปยังจุดโฟกัสที่สอง 12 และไปถึงยังตำแหน่งโฟกัสที่สอง (12) ดังกล่าวพร้อม ๆ กัน โดยหน้าที่ของแพทย์คือต้องวางตำแหน่งนิ่วในไต (kidney stone) ให้อยู่ตรงตำแหน่งโฟกัสที่สอง (12) นี้ พลังงานของคลื่นกระแทกที่กลับมารวมกันที่จุดเดียวกันนี้จะสูงมากพอที่จะทำให้ก้อนนิ่วในไตแตกออกเป็นชิ้นเล็ก ๆ ได้

รูปที่ ๑ สิทธิบัตรการทำงานของเครื่องสลายนิ่วในไตด้วยคลื่นกระแทก (Lithotripter)

การทำให้เกิดประกายไฟได้ต้องมีวงจรไฟฟ้าสร้างความต่างศักย์สูง รูปที่ ๒ เป็นตัวอย่างหนึ่งของวงจรดังกล่าวที่มีการสร้างขึ้นเพื่อใช้ในงานวิจัย ตัววงจรจะมีการแปลงไฟฟ้ากระแสสลับที่ใช้กันในอาคารบ้านเรือนเป็นไฟฟ้ากระแสตรงความต่างศักย์สูง (ระดับพันโวลต์) เก็บพลังงานสะสมไว้ในตัวเก็บประจุ (capacitor หรือ condenser) ที่สามารถสะสมพลังงานได้มาก และเมื่อสะสมพลังงานได้สูงเพียงพอแล้วก็จะปลดปล่อยพลังงานทั้งหมดออกมาในเวลาอันสั้น (ในรูปแบบของประกายไฟที่กระโดยข้ามขั้วไฟฟ้า)

และตัวเก็บประจุที่มีบทบาทสำคัญในการสะสมพลังงานของวงจรในรูปที่ ๒ ก็คือ C1, C2 และ C3

รูปที่ ๒ ตัวอย่างหนึ่งของวงจรสร้างประกายไฟที่ขั้วไฟฟ้า (ในรูปนี้คือ Electrode Gap)

ตรงนี้ขอบันทึกความรู้พื้นฐานเรื่องการต่อตัวเก็บประจุ (ซึ่งตัวเองก็มีอยู่น้อย) เอาไว้สักหน่อย เนื่องจากมันจำเป็นต้องใช้ในการทำความเข้าใจว่าตัวเก็บประจุนี้มันกลายเป็นสินค้าที่ใช้ได้สองทางได้อย่างไร

เราสามารถนำตัวเก็บประจุมาต่อกันแบบอนุกรม (series) หรือขนาน (paralle) ได้แบบตัวความต้านทาน (resistor) เพื่อให้ตัวเก็บประจุสามารถรองรับความต่างศักย์และ/หรือมีความจุตามที่เราต้องการได้ หน่วยความจุของตัวเก็บประจุคือ Farad (อ่านออกเสียงว่า "ฟาหรัด" แต่ถ้าเขียนจะเป็น "ฟารัด") ที่ย่อว่า F ขนาดที่มีขายกันทั่วไปก็จะมีระดับ nF (นาโนฟารัดหรือ 10-9 F), pF (พิโคฟารัดหรือ 10-9 F) ใหญ่ขึ้นมาหน่อยก็จะเป็น µF (ไมโครฟารัดหรือ 10-6 F) และ mF (มิลลิฟารัดหรือ 10-3 F) ส่วนพลังงานที่ตัวเก็บประจุเก็บได้คำนวณได้จากสูตร E = (1/2)CV2 เมื่อ C คือความจุ (F) และ V คือความต่างศักย์ (volt) พึงสังเกตว่าพลังงานแปรผันตามความต่างศักย์ยกกำลัง 2

ถ้านำเอาตัวเก็บประจุ 2 ตัวมาต่ออนุกรมกัน ความต่างศักย์ไฟฟ้าที่ตัวเก็บประจุต่อกันอยู่นั้นก็จะเท่ากับผลรวมของตัวเก็บประจุทั้งสอง เช่นถ้าเอาตัวเก็บประจุที่ออกแบบมาใช้กับความต่างศักย์ 750 V 2 ตัวมาต่ออนุกรม ตัวเก็บประจุ 2 ตัวที่ต่ออนุกรมกันนี้จะรับความต่างศักย์ได้ 750 + 750 = 1500 V หรือ 1.5 kV

ความสามารถในการเก็บประจุของตัวเก็บประจุหลายตัวที่นำมาต่อเข้าด้วยกันนั้นขึ้นกับรูปแบบการต่อ กล่าวคือถ้าต่อขนานกัน ประมาณประจุที่เก็บได้ (CT) จะเท่ากับปริมาณประจุที่ตัวเก็บประจุแต่ละตัวเก็บได้บวกรวมกัน แต่ถ้านำมาต่ออนุกรมกันต้องคำนวณจากสูตร 1/CT = 1/C1 + 1/C2 + 1/C3 + ... เมื่อ Ci คือปริมาณประจุที่ตัวเก็บประจุแต่ละตัวเก็บ

ตัวอย่างเช่นถ้านำตัวเก็บประจุขนาด 40 nF 100 kV 2 ตัวมาต่อขนานกัน ความต่างศักย์ทำงานของตัวเก็บประจุทั้งสองก็คือ 100 kV แต่จะเก็บประจุได้ 40 + 40 = 80 nF แต่ถ้าเรานำมาต่ออนุกรมกัน ความต่างศักย์ทำงานของตัวเก็บประจุทั้งสองจะเป็น 100 + 100 = 200 kV ส่วนประจุจะเก็บได้เพียง 1/CT = 1/40 + 1/40 หรือ CT = 20 nF หรือน้อยลงกว่าเดิม

ดังนั้นวิธีการหนึ่งที่สามารถทำได้ในการสร้างตัวเก็บประจุทำงานที่ความต่างศักย์สูงและเก็บประจุได้มาก จากตัวเก็บประจุที่รับความต่างศักย์ได้ต่ำกว่าก็คือ การนำเอาตัวเก็บประจุที่รับความต่างศักย์ได้ต่ำนั้นมาต่ออนุกรมกันจนมันสามารถรับความต่างศักย์ได้สูง และทำแบบนี้ให้ได้หลาย ๆ ชุดแล้วจึงนำมาต่อวงจรแบบขนานกัน

รูปที่ ๓ รายละเอียดชิ้นส่วนประกอบต่าง ๆ ของวงจรในรูปที่ ๒

ทีนี้มาลองพิจารณากรณีของตัวเก็บประจุ C1, C2 ที่มีคุณสมบัติเท่าที่เปิดเผยดังแสดงในรูปที่ ๓ คือแต่ละตัวเก็บประจุได้ 40 nF ทำงานกับความต่างศักย์ 100 kV ดังนั้นตัวเก็บประจุแต่ละตัวจะเก็บพลังงานได้เท่ากับ (1/2).(40 x 10-9).(100000)2 = 200 J แต่ถ้านำ 2 ตัวมาต่อขนานกันก็จะเก็บประจุได้ 80 nF คิดเป็นพลังงานที่เก็บสะสมได้เท่ากับ (1/2).(80 x 10-9).(100000)2 = 400 J (Joule)

ส่วนพลังงานที่ตัวเก็บประจุ C3 นั้นเก็บสะสมไว้ได้ก็จะเท่ากับ (1/2).(0.001 x 10-3).(25000)2 = 312.5 J

ทีนี้ลองไปพิจารณาคุณสมบัติตัวเก็บประจุที่เป็นสินค้าควบคุมดังแสดงในรูปที่ ๔ กันหน่อย

รูปที่ ๔ ตัวเก็บประจุที่เป็นสินค้าควบคุมต้องมีคุณลักษณะตามหัวข้อ 3A001.e และ 3A201.a

เนื่องจากข้อมูลที่เปิดเผยในรูปที่ ๓ มีเพียงแค่ปริมาณประจุที่เก็บสะสมได้กับความต่างศักย์ใช้งาน ดังนั้นจะขอพิจารณาเฉพาะสองประเด็นนี้ จะเห็นว่าตัวเก็บประจุขนาด 40 nF 100 kV (ที่ใช้ทำ C1 และ C2) และขนาด .001 mF (หรือ 1 µF) 25 kV (ที่ใช้ทำ C3) จะมีคุณสมบัติเข้าเกณฑ์ในเรื่องของความต่างศักย์ทั้งในหัวข้อ 3A001.e.2 และ 3A201.a และผ่านเกณฑ์เรื่องพลังงานรวม (total energy) ในหัวข้อ 3A001.e.2.b และ 3A201.a.1

ที่น่าสนใจคือตัวเก็บประจุ C3 ที่ทำงานที่ความต่างศักย์ 25 kV (ผ่านเกณฑ์ 3A201.a.1.a ที่กำหนดไว้ว่าต้องสูงกว่า 1.4 kV) มีความจุ 1 µF (ผ่านเกณฑ์ 3A201.a.1.c ที่กำหนดไว้ว่าต้องสูงกว่า 0.5 µF) คิดเป็นพลังงานที่เก็บสะสมได้ 312.5 J (ผ่านเกณฑ์ 3A201.a.1.b ที่กำหนดไว้ว่าต้องมากกว่า10 J) ทีนี้ก็เหลือเพียงข้อเดียวคือ 3A201.a.1.d ว่าผ่านหรือไม่ (ในบทความที่ยกมาเป็นตัวอย่างไม่ได้ให้ข้อมูลตัวนี้ไว้) ซึ่งถ้าผ่านมันก็จะเป็นสินค้าที่ใช้ได้สองทางที่เป็นส่วนประกอบหนึ่งของสินค้าที่ใช้งานในทางการแพทย์

แล้วมันเกี่ยวข้องกับ "การจุดระเบิดอาวุธนิวเคลียร์" อย่างไร คำตอบคือก็เพราะมันเป็นชิ้นส่วนประกอบสำคัญชิ้นส่วนหนึ่งของ Exploding Bridge Wire ที่ใช้จุดระเบิด Explosive lens ของอาวุธนิวเคลียร์ ซึ่งเรื่องนี้ได้เขียนไว้ในบทความฉบับวันพฤหัสบดีที่ ๒๙ สิงหาคม ๒๕๖๒ เรื่อง "สินค้าที่ใช้ได้สองทาง(Dual-Use Items :DUI) ตอนที่ ๕"

วันพฤหัสบดีที่ 16 พฤศจิกายน พ.ศ. 2566

เพลิงไหม้และการระเบิดที่โรงงานผลิต HDPE เนื่องจากเฮกเซนรั่ว MO Memoir : Thursday 16 November 2566

เรื่องที่นำมาเล่าในวันนี้นำมาจากหน้าเว็บของ ISEC International Safety Eng. Co. เป็นเหตุการณ์เฮกเซนรั่วและตามมาด้วยการระเบิดเมื่อวันที่ ๑๓ กันยายน ค.ศ. ๒๐๑๐ (พ.ศ. ๒๕๕๓) ตัวคลิปวิดิทัศน์นั้นจำลองภาพโรงงานได้ชัดเจนดี แต่ไปจบที่เกิดการระเบิดโดยที่ไม่มีคำอธิบายว่าเกิดจากสาเหตุใด ซึ่งต้องไปอ่านในรายงานการสอบสวน ทั้งคลิปและรายงานไปดูได้ที่ https://www.isecinvestigation.com/Petrochemical-Company-HD-Plant-Explosion-and-Fire/

ที่นำมาเล่าในวันนี้ก็เพราะพอคุ้นกับกระบวนการผลิตของโรงงานแบบนี้ และพบว่าคำบรรยายในคลิปกับรูปที่ปรากฏนั้นไม่ตรงกัน แต่ถ้าดูเผิน ๆ โดยไม่คิดจะจับผิดอะไร แบบเอาเป็นว่ามีคนเล่าเรื่องให้ฟังและมีภาพประกอบให้ดูก็ไม่เป็นไร แต่ในรายงานเองนั้นก็ไม่ได้อธิบายว่าเฮกเซนรั่วไหลออกมาได้อย่างไร ก็เลยเป็นที่มาของเรื่องเล่าในวันนี้

รูปที่ ๑ Reactor แบบ CSTR อยู่ที่มุมซ้ายล่าง โดยมี Overhead condenser สองตัวอยู่ด้านขวาบน

โรงงานนี้มีถังปฏิกรณ์แบบถังปั่นกวน (Continuous Stirred Tank Reactor - CSTR) 2 ตัว (ดูรูปที่ ๑ ประกอบ) ภายในบรรจุเฮกเซนที่เป็นของเหลวภายใต้ความดัน (คืออุณหภูมิทำปฏิกิริยามันสูงกว่าจุดเดือดเฮกเซนที่ความดันบรรยากาศ แต่ด้วยความดันในระบบที่สูงจึงทำให้เฮกเซนนั้นยังเป็นของเหลวอยู่) สารตั้งต้นที่เป็นแก๊สจะถูกฉีดเข้าไปที่ส่วนล่างของถังปฏิกรณ์ และในระหว่างที่มันลอยขึ้นด้านบนนั้นแก๊สบางส่วนก็จะทำปฏิกิริยากลายเป็นผงพอลิเมอร์แขวนลอยอยู่ในเฮกเซน ความร้อนที่ปฏิกิริยาคายออกมาจะทำให้เฮกเซนบางส่วนระเหยกลายเป็นไอ ไหลออกทางด้านบนของถังปฏิกรณ์ร่วมกับแก๊สที่ยังไม่ทำปฏิกิริยา ไปตามท่อสีเหลืองไปยังเครื่องควบแน่นที่จะควบแน่นไอเฮกเซนให้เย็นตัวลงเป็นของเหลว จากนั้นเฮกเซนที่ควบแน่นและแก๊สสารตั้งต้นที่ไม่ควบแน่นจะไหลลงไปยังถังแยกของเหลว-แก๊สที่อยู่ทางด้านล่าง (ต่อรูปที่ ๒)

รูปที่ ๒ ด้านขวาของรูปคือถังแยกเฮกเซนที่ควบแน่นและแก๊สที่ไม่ทำปฏิกิริยา

ข้อดีของการทำปฏิกิริยาแบบนี้คือมันควบคุมอุณหภูมิการทำปฏิกิริยาได้ง่ายด้วยการกำหนดความดันในถัง ให้เฮกเซนนั้นเดือดที่อุณหภูมิที่ต้องการทำปฏิกิริยา (ที่ความดันคงที่ ของเหลวจะเดือดที่อุณหภูมิคงที่ ไม่ว่าจะป้อนความร้อนเข้ามาเท่าใดก็ตาม) แต่มันจะมีปัญหาเรื่องการเกิดโอลิโกเมอร์ (oligomer คือพวกที่สายโซ่ยังไม่ยาวพอที่จะเป็นพอลิเมอร์ที่สามารถเอาไปใช้งานได้)

เฮกเซนที่ควบแน่นและแก๊สที่ยังไม่ทำปฏิกิริยาเมื่อไหลลงสู่ถังแยก ของเหลวจะตกลงสู่ก้นถังและถูกสูบป้อนกลับเข้าไปยังถังปฏิกรณ์ใหม่ ส่วนแก๊สนั้นจะถูก blower ดูดออกทางด้านบน ผสมเข้ากับแก๊สสารตั้งต้นที่ป้อนเข้ามาชดเชย ก่อนถูกอัดกลับเข้าไปในถังปฏิกรณ์จากทางด้านบน ในรูปที่ ๒ ถ้าไล่ตามแนวท่อสีเหลืองจากด้านขวาไปซ้าย จะเห็นว่าจะมีการแยกท่อแก๊สเพื่อกระจายตำแหน่งฉีดแก๊สเข้าไปยังมุมต่าง ๆ ของถัง (ตรงลูกศรสีแดงชี้)

แก๊สที่ไหลเข้าไปในถังนั้นจะไหลเข้าไปในท่อที่จุ่มอยู่ใต้ผิวของเหลว ภาพจำลองหน้าจอคอมพิวเตอร์ควบคุม (รูปที่ ๓) ก็บ่งบอกไว้อย่างนั้น แม้ว่าทั้งคลิปวิดิทัศน์และรายงานไม่ได้ระบุว่าเฮกเซนไหลออกจากถังปฏิกรณ์ได้อย่างไร แต่ถ้ามีข้อมูลตรงจุดนี้ก็จะบอกได้ว่าทำไมเฮกเซนจึงไหลออกจากถังปฏิกรณ์ได้

ก่อนหน้านี้โรงงานได้หยุดทำการผลิตเพื่อทำการปรับปรุงโรงงานเพื่อเพิ่มกำลังการผลิต ช่วงเวลาที่เกิดเหตุเป็นช่วงเวลาที่จะนำโรงงานกลับมาเดินเครื่องใหม่ ซึ่งก่อนที่จะเริ่มเดินเครื่องก็ต้องมีการตรวจสอบระบบก่อนว่ามีรอยรั่วที่ใดบ้างหรือไม่ และในระหว่างการตรวจสอบก็พบว่า ท่อป้อนแก๊ส "จาก blower ตัวหนึ่งกลับไปยังถังปฏิกรณ์" มีการรั่วและจำเป็นต้องเปลี่ยนท่อนั้น จึงได้มีการถอดท่อนั้นออกไป

คำบรรยายที่ปรากฏในคลิปวิดิทัศน์และในรายงานนั้นกล่าวตรงกันคือเป็นท่อป้อนแก๊ส "จาก blower ตัวหนึ่งกลับไปยังถังปฏิกรณ์" แต่ภาพที่ปรากฏในคลิปวิดิทัศน์ที่เขาทำผมดูแล้วเห็นว่ามันกลายเป็นท่อ "จากเครื่องควบแน่นมายังถังแยกของเหลวและแก๊สออกจากกัน" และพอไปอ่านรายงานก็พบปัญหาเรื่องความน่าสงสัยของรายละเอียดอีก

เพื่อไม่ให้งานหยุดชะงักระหว่างรอเปลี่ยนท่อ ทางโรงงานจึงได้ตัดสินใจทำการสอบเทียบอุปกรณ์วัดระดับของเหลวภายในถังปฏิกรณ์ในช่วงเวลารอคอยดังกล่าว

รูปที่ ๓ ภาพจำลองจากหน้าจอคอมพิวเตอร์ควบคุม แก๊สจะถูกฉีดเข้าไปในท่อที่จุ่มอยู่ใต้ผิวของเหลว

การตรวจวัดระดับของเหลวใช้การวัดความดัน และเนื่องจากความดันขึ้นกับความหนาแน่นของเหลวก็เลยต้องใช้การเติมเฮกเซนเข้าไปในถังปฏิกรณ์ ท่อที่ถอดออกไปนั้นเป็นท่อป้อนแก๊สกลับเข้ามาในถังและท่อนี้ก็เข้าทางด้านบนของถัง ถังนั้นถ้าถังไม่มีความดัน เฮกเซนก็จะไม่สามารถไหลขึ้นด้านบน (ไหลเข้ามาทางปลายท่อที่จุ่มอยู่ในของเหลว) แต่ในการสอบเทียบอุปกรณ์วัดระดับนั้นได้มีการอัดความดันในถังปฏิกรณ์ด้วย (เข้าใจว่าเพื่อไม่ให้เสียเวลาเริ่มเดินเครื่องใหม่เมื่อทำการติดตั้งท่อใหม่เข้าแทนที่ท่อที่ถอดออกไปเสร็จ) ดังนั้นมันจึงมีโอกาสที่เฮกเซนจะถูกความดันในถังให้ไหลย้อนไปทางท่อแก๊สป้อนเข้าถังได้ ทางโรงงานจึงได้ทำการสอด spade (หรือ slip plate) เข้าที่ตำแหน่งหน้าแปลนตัวหนึ่งที่อยู่ระหว่างถังปฏิกรณ์กับปลายท่อที่เปิดอยู่

ความดันที่ด้านล่างของถังจะเท่ากับผลรวมของความดันเนื่องจากความสูงของของเหลวและความดันเหนือผิวของเหลว ดังนั้นเพื่อให้ระบุระดับที่แท้จริงของของเหลวได้จึงต้องวัดความดันในถังส่วนที่อยู่เหนือผิวของเหลวด้วย ซึ่งเมื่อนำความดันเหนือผิวของเหลวไปหักออกจากความดันด้านล่างของถัง ก็จะได้ค่าความดันเนื่องจากความสูงของของเหลวเท่านั้น และจากค่าความหนาแน่นของของเหลวก็จะคำนวณระดับความสูงของของเหลวได้

คำว่า "spade" ในที่นี้ไม่ใช่พลั่ว แต่เป็นแผ่นโลหะรูปวงกลมที่มีด้ามยื่นออกมาเหมือนไม้ปิงปอง เอาไว้สำหรับสอดเข้าไประหว่างหน้าแปลนเพื่อปิดกั้นการไหล ด้ามที่โผล่ยื่นออกมานอกจากช่วยในการจับถือแล้วยังช่วยให้เห็นด้วยว่าหน้าแปลนตรงนั้นมี spade สอดอยู่ อีกชื่อเรียกของมันก็คือ slip plate ในการใช้งานนั้นก็จะคลายหน้าแปลนแล้วง้างออก เอาปะเก็นเดิมที่สอดไว้ระหว่างหน้าแปลนนั้นออกมา และก็สอด spade เข้าไป แน่นอนว่าต้องมีการใส่ปะเก็นระหว่างหน้าแปลนและตัว spade ทั้งสองด้านด้วยเพื่อไม่ให้มันรั่วซึมเวลาขันหน้าแปลนกลับคืน ซึ่งในคู่มือปฏิบัติของโรงงานนี้ก็คือให้ใส่ปะเก็นเทฟลอนที่มีรูปร่างและขนาดเดียวกันกับ spade ที่ใช้เข้าไป (ตรงนี้เข้าใจว่าเป็นเพราะที่ว่างที่จะสอน spade นั้นมีไม่มาก เดิมนั้นน่าจะมีที่ว่างกว้างเพียงแค่สอดหน้าแปลนแบบ spiral wound ได้เพียงตัวเดียว การสอดทั้ง spade และหน้าแปลนแบบ spiral wound เข้าไปอีก 2 ตัวคงทำไม่ได้ (คือหน้าแปลนแบบ spiral wound มันมีความหนาเนื่องจากแผ่นโลหะที่ใช้ทำ) จึงต้องเปลี่ยนมาใช้แผ่นเทฟลอนแทน

รูปที่ ๔ พนักงานสอดเพียงแค่ spade ที่ทำจากเทฟลอนเพียงตัวเดียว และหันด้านที่เป็นด้ามจับขึ้นด้านบน

การสอด spade ที่ถูกต้องที่โรงงานกำหนดนั้น ต้องเป็น spade โลหะที่มี spade ที่เป็นเทฟลอนอยู่ทั้งสองด้านของ spade โลหะ แต่พอทำงานจริงปรากฏว่ามีการสอด spade ที่เป็นเทฟลอนเพียงชิ้นเดียว และยังหันด้านที่เป็นด้ามจับขึ้นบน ในรูปที่ ๔ จะเห็นว่าตำแหน่งที่สอด spade นั้นอยู่สูงจากพื้น และต้องตั้งนั่งร้านขึ้นไปทำงาน

รูปที่ ๕ ภาพการระเบิดจริงจากกล้องวงจรปิด

การเริ่มการสอบเทียบก็มีการตรวจสอบการรั่วไหลอีกครั้ง และพบว่าหน้าแปลนที่ทำการสอด spade เข้าไปนั้นมีการรั่วไหล จึงได้ทำการแก้ไขด้วยการขันน็อตหน้าแปลนให้แน่นขึ้น ซึ่งก็สามารถทำการแก้ไขการรั่วนั้นได้

การสอบเทียบอุปกรณ์วัดระดับด้วยการเติมเฮกเซนและอัดความดันให้กับถังปฏิกรณ์ผ่านไปโดยไม่มีปัญหาอะไร งานดังกล่าวเสร็จสิ้นก่อนถึงเวลาเปลี่ยนกะ (๒๒.๐๐ น) ไม่นาน ทีมทำงานเดิมจึงหยุดการทำงานเพื่อรอให้ทีมใหม่เข้ามาทำงานต่อ และก่อนจะถึงเวลาเปลี่ยนกะเพียงไม่กี่นาที โอเปอร์เรเตอร์ในห้องควบคุมก็เห็นระดับเฮกเซนในถังปฏิกรณ์ลดลงอย่างรวดเร็ว ตามด้วยการระเบิดและเพลิงไหม้ในอีกไม่กี่นาทีถัดมา (รูปที่ ๕) ส่งผลให้มีผู้เสียชีวิต ๑ รายและบาดเจ็บ ๔ ราย

การตรวจสอบที่เกิดเหตุพบว่าการรั่วไหลเกิดจากการฉีดขาดของ spade เทฟลอน กล่าวคือในระหว่างการอัดความดันให้กับถังปฏิกรณ์ ความดันในถังทำให้เฮกเซนไหลย้อนเข้าไปในท่อฉีดแก๊สและไปสะสมอยู่ที่หน้า spade เทฟลอน จนในที่สุดมันไม่สามารถทนต่อความดันได้จึงฉีกขาด (รูปที่ ๖) เฮกเซนจึงรั่วไหลออกทาง "ท่อที่ถูกถอดออก"

รูปที่ ๖ แผ่น spade ที่ทำจากเทฟลอนที่ฉีกขาด

รูปที่ ๗ ข้างล่างเป็นข้อความที่นำมาจากเอกสารเผยแพร่ของทางบริษัทผู้ตรวจสอบ เขาเขียนว่าพอแผ่นเทฟลอนขาด เฮกเซนก็ไหลไปยัง "blower" จากนั้นจึงไปที่ "เครื่องควบแน่น" และในที่สุดก็ไปถึงจุดที่ "ท่อถูกถอดออก" ซึ่งรายละเอียดตรงนี้ผมมองว่ามันไม่สมเหตุสมผล

รูปที่ ๗ คำบรรยายในรายงานในส่วนที่เกิดการรั่วไหลของเฮกเซน

 

รูปที่ ๘ แผนผังอย่างง่ายของกระบวนการผลิต

รูปที่ ๘ ข้างบนเป็นแผนผังของกระบวนการผลิตที่เขียนจากคำบรรยาย คือแก๊สที่ยังไม่ปฏิกิริยา + ไอระเหยของเฮกเซนจะไหลไปยังเครื่องควบแน่นที่อยู่สูงกว่าระดับถังปฏิกรณ์ จากนั้นเฮกเซนที่ควบแน่นและแก๊สที่ไม่ควบแน่นจะไหลลงตามเส้นสีน้ำเงินลงสู่ถังแยกของเหลว-แก๊ส ของเหลวที่ตกลงสู่ก้นถังจะถูกสูบป้อนกลับไปยังถังปฏิกรณ์ใหม่ ส่วนแก๊สนั้นจะถูก blower ดูดและอัดกลับเข้าไปในถังปฏิกรณ์ใหม่ตามเส้นสีแดง

คำบรรยายในคลิปวิดิทัศน์และเอกสารเผยแพร่นั้นบอกตรงกันว่าท่อที่มีปัญหาคือท่อป้อนแก๊สจาก blower ตัวหนึ่งกลับไปยังถังปฏิกรณ์ (เส้นสีแดง) ในขณะที่ถ้าไล่รูปในคลิปวิดิโอมันจะเป็นเส้นสีน้ำเงิน

แต่ไม่ว่าจะเป็นท่อเส้นไหนก็ตามระหว่างท่อสองเส้นนี้ มันจะมีจุดที่ท่อถูกถอดออกอยู่ ดังนั้นเฮกเซนที่ไหลย้อนเข้ามาทางท่อฉีดแก๊สกลับ (เส้นสีแดง) จะไม่สามารถไหลย้อนไปยังเครื่องควบแน่นได้ ด้วยเหตุนี้ผมจึงบอกว่าข้อความในรายงานที่ว่า "เฮกเซนไหลย้อนไปจนถึงเครื่องควบแน่นแล้วก่อนถึงจุดที่ท่อถูกถอดออก" จึงเป็นข้อความที่ไม่สมเหตุสมผล

ด้วยเหตุนี้ตอนต้นเรื่องจึงได้เกริ่นเอาไว้ว่า เรื่องนี้ถ้าดูเพลิน ๆ โดยไม่คิดอะไรมันก็ไม่มีปัญหาอะไร แต่ถ้าอ่านโดยละเอียดจะพบความไม่สมเหตุสมผลนี้อยู่ ตรงนี้ไม่แน่ใจว่าผู้ทำคลิปและรายงานจงใจให้เป็นอย่างนั้นหรือไม่ ซึ่งก็เป็นไปได้เพราะเขาต้องรักษาความลับของลูกค้าของเขา เพราะเมื่อลองใช้ google ค้นหาข่าวการระเบิดในวันเดือนปีดังกล่าวก็ไม่พบ แต่ก็อาจเป็นไปได้ว่าเพราะค้นด้วยคำภาษาอังกฤษ แต่รายงานเหตุการณ์มันเป็นภาษาอื่น

ประเด็นหนึ่งที่น่าสนใจคือ ทำไมถึงเกิดการสอด spade ไม่ครบตามข้อกำหนดขึ้นได้ ในระหว่างการสอด spade นั้นมีผู้ทำงานกี่คน และไม่มีใครทักท้วงเลยหรือว่ามันไม่สมบูรณ์ และตอนที่พบการรั่วไหล ทีมที่มาแก้ไขกับทีมที่ทำการติดตั้ง spade นั้นเป็นทีมเดียวกันหรือไม่ จึงไม่มีการทักท้วง

สำหรับฉบับนี้ก็คงจบลงเพียงแค่นี้

วันอังคารที่ 14 พฤศจิกายน พ.ศ. 2566

การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๘ The Blue Team : Spray drying equipment MO Memoir : Tuesday 14 November 2566

บันทึกฉบับนี้เป็นตอนต่อจากฉบับที่แล้ว การอบรมในช่วงบ่ายมีการเปลี่ยนสถานการณ์เป็นตรงข้ามกับช่วงเช้า โจทย์ที่ได้รับเป็นสถานการณ์สมมุติว่า มีผู้ติดต่อขอซื้ออุปกรณ์ใช้งานแล้วของบริษัทคือเครื่องทำแห้งแบบพ่นฝอย (Spray dryer หรือ spray drying equipment) โดยให้ราคาที่น่าสนใจ แต่ก่อนอื่นมาลองทำความรู้จักเครื่องนี้กันก่อนว่ามันมีหลักการทำงานอย่างไร

เครื่องฉีดพ่นแห้งแบบพ่นฝอยใช้ในการผลิตผลิตภัณฑ์ของแข็งที่เป็นผงอนุภาคขนาดเล็กจากของเหลวที่เป็นสารละลายหรือคอลลอยด์ (colloid) โดยจะทำการฉีดพ่นของเหลวออกเป็นหยดละอองเล็ก ๆ ที่เมื่อสัมผัสกับแก๊สร้อน (ถ้าไม่เกรงว่ามันจะทำปฏิกิริยากับอากาศร้อนก็ใช้อากาศร้อนได้) ที่ป้อนเข้ามาให้ไหลในทิศทางเดียวกันกับการฉีด (ส่วนใหญ่จะเป็นอย่างนี้) ตัวทำละลายที่อยู่ในหยดของเหลวก็จะระเหยไป (อันที่จริงการระเหยของเหลวนอกจากจะใช้ความร้อนแล้วยังสามารถใช้การลดความดันร่วมด้วยได้ในกรณีที่เกรงว่าผลิตภัณฑ์จะเสื่อมสภาพเนื่องจากความร้อน) เหลือแต่ส่วนที่เป็นของแข็งที่ถูกพัดพาไปกับแก๊สร้อนที่ถูกดูดให้ไหลผ่านอุปกรณ์แยกเช่นไซโคลน (cyclone)

อุปกรณ์ชนิดนี้มีหลายขนาดตั้งแต่ขนาดเล็กตั้งบนโต๊ะได้เพื่อใช้ในการเรียนการสอนหรือการทดลอง (ที่ทำงานผมก็มีอยู่หนึ่งเครื่อง เอาไว้ให้นิสิตทำการทดลอง) ระดับโรงประลอง (รูปที่ ๑) หรือระดับอุตสาหกรรมที่มีขนาดใหญ่เท่าอาคาร


รูปที่ ๑ ตัวอย่างเครื่อง spray dryer จากเว็บของบริษัทหนึ่ง กำลังการผลิตของเครื่องอยู่ที่ระดับ.โรงประลอง (pilot plant) เครื่องนี้สามารถผลิตอนุภาคที่มีขนาดในช่วง 1 - 150 ไมโครเมตรได้

ตัวอย่างผลิตภัณฑ์ใกล้ตัวเราที่ผลิตด้วยเครื่องชนิดนี้ได้แก่ผงซักฟอกและนมผง ยาที่เป็นของแข็งที่ต้องการฉีดพ่นเข้าไปในลำคอก็จะใช้อุปกรณ์ชนิดนี้ผลิตเพื่อให้ได้อนุภาคที่มีขนาดเล็กกว่า 10 ไมโครเมตร (ขนาดที่สามารถล่องลอยค้างอยู่ในอากาศเข้าลึกไปภายในระบบทางเดินหายใจของคนได้) ผลิตภัณฑ์เครื่องสำอางบางชนิดที่ต้องใช้ส่วนประกอบที่เป็นของแข็งที่เป็นอนุภาคขนาดเล็ก การผลิตผงอนุภาคของแข็งขนาดเล็กเพื่อนำไปใช้ประโยชน์อย่างอื่นก็อาจใช้เทคนิคนี้ในการผลิตได้

ในการฝึกอบรมนั้น ทางวิทยากรให้โจทย์ปัญหามา ๑ แผ่น โดยขอให้อ่านแต่เพียงหน้าแรกและตอบคำถามชุดที่หนึ่งก่อน จากนั้นจึงค่อยพลิกไปอ่านข้อมูลเพิ่มเติมในหน้าที่สองและตอบคำถามชุดที่สอง แต่ก่อนอื่นลองอ่านโจทย์หน้าแรกในรูปที่ ๒ ข้างล่างดูก่อนว่าสถานการณ์เป็นอย่างไร


รูปที่ ๒ หน้าแรกของโจทย์ที่ได้รับมา ที่สมมุติให้เราเป็นผู้จัดการโรงงานของเจ้าของบริษัท ส่วนคำถามนั้นไม่ได้ถ่ายรูปเก็บเอามาด้วย

Spray dryer ที่เข้าข่ายเป็นสินค้าที่ใช้ได้สองทางต้องมีคุณสมบัติเป็นไปตามที่ระบุไว้ในหัวข้อ 2B352.h ทุกข้อดังแสดงในรูปที่ ๓ ข้างล่าง แต่เมื่อได้ลองอ่านข้อกำหนดฉบับภาษาอังกฤษ (ปีค.ศ. ๒๐๒๒) เทียบกับฉบับแปลเป็นไทย (อิงฉบับภาษาอังกฤษปีค.ศ. ๒๐๑๙) ก็ขอแสดงความคิดเห็นไว้ตรงนี้หน่อย

รูปที่ ๓ Spray dryer ที่เป็นสินค้าควบคุม ต้องมีคุณลักษณะเป็นไปตามที่ระบุไว้ในหมวด 2B352.h

ข้อกำหนดข้อ 1. ภาษาอังกฤษใช้คำว่า "water evaporation capacity" ซึ่งหมายถึงความสามารถในการระเหยน้ำ แต่ในฉบับภาษาไทยแปลว่า "ความสามารถในการระเหย" โดยไม่มีคำว่า "น้ำ" ถ้าอ่านฉบับภาษาอังกฤษก็จะเข้าใจว่าตัวเลข 0.4 kg/h หรือ 400 kg/h คือ "ปริมาณน้ำที่สามารถดึงออกจากสารละลายที่ฉีดเข้ามา" ไม่ใช่ "ปริมาณสารละลายที่ฉีดเข้ามา" เพราะปริมาณน้ำที่ต้องการดึงออกนั้นเป็นตัวกำหนดปริมาณความร้อนที่ต้องให้ (ผ่านทางอุณหภูมิและอัตราการไหลของแก๊สร้อนที่ป้อนเข้ามา) เพื่อระเหยน้ำจากหยดสารละลายที่ฉีดเข้ามา เพราะพลังงานความร้อนที่ต้องใช้เพื่อทำให้น้ำที่เป็นของเหลวกลายเป็นไอนั้น มีค่ามากกว่าความร้อนที่ต้องใช้ในการทำให้น้ำที่เป็นของเหลวกลายเป็นน้ำที่ยังเป็นของเหลวแต่มีอุณหภูมิสูงขึ้นอยู่มาก

ข้อกำหนดข้อ 2. ภาษาอังกฤษใช้คำว่า "mean ... particle size" ซึ่งถ้าตีความตามนี้จะแปลคำว่า "mean" คือ "ค่าเฉลี่ย" แต่ในฉบับภาษาไทยใช้คำว่า "ปกติ" ซึ่งคงต้องมีการตีความกันอีกว่า "ขนาดปกติ" คืออะไร

แต่ในทางสถิติเวลาพูดถึง "ค่าเฉลี่ย" (ที่ตรงกับคำภาษาอังกฤษ "mean") ยังมีการแยกออกเป็น ๓ แบบคือ Mean, Medium และ Mode ดังแสดงในรูปที่ ๓

เพื่อให้เห็นภาพจะลองยกตัวอย่างในการสอบวิชาหนึ่งมีผู้เข้าสอบ 101 คน สอบได้ 30 คะแนนจำนวน 50 คน, สอบได้ 60 คะแนนจำนวน 1 คน, สอบได้ 65 คะแนนจำนวน 25 คน และสอบได้ 75 คะแนนจำนวน 25 คน

ค่าเฉลี่ยแบบ "Mean" คือการเอาคะแนนของผู้เข้าสอบทุกคนมาบวกรวมกันแล้วหารด้วยจำนวนผู้เข้าสอบ ในกรณีนี้ก็คือ ((25 x 75) + (25 x 65) + (1 x 60) + (50 x 30))/101 = 50.1 คะแนน

ค่าเฉลี่ยแบบ "Medium" คือการเอาคะแนนของผู้เข้าสอบทุกคนมาเรียงลำดับกันจากมากไปน้อย (หรือน้อยไปมากก็ได้) และดูว่าคนที่อยู่ตรงกลางของลำดับคะแนน (ในกรณีนี้คือคนที่ 50) สอบได้คะแนนเท่าไร ในกรณีนี้คือ 60 คะแนน

ค่าเฉลี่ยนแบบ "Mode" คือการเอาคะแนนของผู้เข้าสอบทุกคนมาพิจารณาว่า คะแนนใดที่มีจำนวนผู้สมัครได้เท่ากันมากที่สุด เช่นในกรณีนี้ค่าเฉลี่ยแบบ Mode ก็คือ 30

รูปที่ ๓ นิยามของค่าเฉลี่ย Mean, Mode และ Medium (รูปจาก https://www.cif.iastate.edu/sites/default/files/uploads/Other_Inst/Particle%20Size/Particle%20Characterization%20Guide.pdf) ตรงนี้อย่าไปจำว่าค่าเฉลี่ยมันต้องเรียงลำดับตามนี้ มันขึ้นอยู่กับรูปแบบการกระจายตัวของข้อมูล

โดยส่วนตัวผม ผมยังคิดว่าคำว่า "mean" ที่ระบุไว้ในข้อกำหนดข้อ 2. นั้นเป็นการกล่าวกลาง ๆ ถึง "ค่าเฉลี่ย" ที่ต้องไปตีความกันอีกทีว่าเป็นค่าเฉลี่ยแบบ "Mean", "Medium" หรือ "Mode" ดังที่อธิบายมาข้างต้น ซึ่งตรงจุดนี้มองว่ายังเป็นประเด็นให้ถกเถียงได้อยู่ในการตีความ ในกรณีที่พบว่าเมื่อนำขนาดอนุภาคมาคำนวณค่าเฉลี่ยในรูปแบบต่าง ๆ แล้วพบว่าค่าเฉลี่ยบางรูปแบบนั้นให้ค่าต่ำกว่า 10 ไมโครเมตรและบางรูปแบบให้ค่ามากกว่า 10 ไมโครเมตร

ในกรณีเช่นนี้โดยความเห็นส่วนตัวคิดว่าอาจต้องขอดูข้อมูล "การกระจายตัวของขนาดอนุภาค (Particle size distribution)" ประกอบด้วย

ข้อกำหนดข้อ 3. กล่าวถึงความสามารถที่จะทำการฆ่าเชื้อในตัวอุปกรณ์หรือทำให้ตัวอุปกรณ์ปลอดเชื้อได้ในตัว (in situ) นั่นหมายถึงการสามารถกำจัดเชื้อจุลชีพต่าง ๆ ที่อยู่ในตัวอุปกรณ์โดยไม่จำเป็นต้องแยกส่วนออกมาทำการฆ่าเชื้อแล้วประกอบเข้าไปใหม่

เทคนิคหลักที่ใช้กันในการกำจัดเชื้อก็เห็นมีอยู่ 3 เทคนิคคือ การใช้ความร้อน, การใช้สารเคมี, และการฉายรังสี

การใช้ความร้อนก็อาจใช้ แก๊สร้อน, ไอน้ำ หรือน้ำร้อน วิธีการนี้ก็สะดวกดีในกรณีที่ทุกขิ้นส่วนนั้นเป็นโลหะ เพราะไม่ต้องกังวลว่ามันจะเสื่อมคุณภาพเนื่องจากอุณหภูมิ (ปรกติก็จะใช้อุณหภูมิสูงเกิน 100 องศาเซลเซียสไปไม่มากนัก) แต่ต้องระวังว่าระบบต้องไม่มีวัสดุที่ทนอุณหภูมิสูงไม่ได้ (เช่นพวกปะเก็นพอลิเมอร์หรือยาง ที่อาจซ่อนอยู่ตามข้อต่อหรือตัววาล์ว)

การฆ่าเชื้อด้วยสารเคมีเหมาะกับวัสดุที่ไม่ทนต่อความร้อน (เช่นพวกพอลิเมอร์และพลาสติกหลายชนิดที่ใช้ในทางการแพทย์) แต่วัสดุนั้นต้องทนต่อสารเคมี สารเคมีที่ใช้มีทั้งที่เป็นแก๊ส (เช่นเอทิลีนออกไซด์ ethylene oxide และโอโซน) และที่เป็นของเหลว (เช่น ไฮโดรเจนเปอร์ออกไซด์, กรดเปอร์อะซีติก, กรดเปอร์ฟอร์มิก) แต่การใช้สารเคมีนั้นต้องระวังเรื่องสารเคมีตกค้างในระบบ โดยเฉพาะกรณีที่สารเคมีนั้นเป็นสารที่เสถียร ไม่สลายตัว เช่น กรดอะซีติกและกรดฟอร์มิก ที่เป็นส่วนผสมอยู่ในกรดเปอร์อะซีติกและกรดเปอร์ฟอร์มิก)

การฆ่าเชื้อด้วยรังสีนั้นมีทั้งรังสี UV (อัลตร้าไวโอเล็ต) และแกมมา รังสี UV จะทำงานได้ดีกับพื้นผิวเปิดที่รังสีส่องกระทบได้ คือกำจัดเชื้อได้เฉพาะด้านที่รังสีสามารถส่องกระทบ ในขณะที่รังสีแกมมาสามารถทะลุทะลวงผ่านโลหะได้ จึงสามารถเข้าไปฆ่าเชื้อที่อยู่ทางอีกฟากด้านของพื้นผิวได้

โจทย์บอกว่าเครื่องจักรที่ต้องการส่งออกใช้กับโรงงานผลิตเซรามิกคุณภาพสูงสำหรับ "อุตสาหกรรม" ต่าง ๆ ตอนแรกที่เห็นคำว่า "อุตสาหกรรม" ก็สงสัยเหมือนกันว่าทำไมต้องใช้เครื่องที่สามารถทำการฆ่าเชื้อได้ในตัว แต่ถ้าเป็นเซรามิกเพื่อใช้ในทางการแพทย์ เช่น วัสดุอุดฟันหรือซ่อมแซมกระดูก ก็ว่าไปอย่าง

รูปที่ ๔ นำมาจากบทความหนึ่งที่ทำการวิเคราะห์วัสดุเซรามิกสำหรับใช้ในงานทันตกรรมที่มีขายในท้องตลาด (ไม่มีการระบุว่าถูกผลิตด้วยเทคนิคอะไร) จะเห็นว่าอนุภาคส่วนใหญ่มีขนาดใหญ่กว่า 10 ไมโครเมตร

รูปที่ ๔ ผลการวิเคราะห์การกระจายขนาดอนุภาควัสดุเซรามิกใช้งานงานทันตกรรมที่มีจำหน่ายในท้องตลาดจากบทความ

แต่การคิดตรงนี้อิงจาก "ปริมาตร" ไม่ใช่ "จำนวน" กล่าวคืออนุภาคขนาดใหญ่ 1 อนุภาคอาจมีปริมาตรมากกว่าอนุภาคขนาดเล็ก 10 อนุภาครวมกัน ในการคิดแบบปริมาตรนี้จะพบว่ามีอนุภาคขนาดใหญ่เกิน 50% แต่ถ้าคิดแบบจำนวนจะพบว่ามีเพียง 10% เท่านั้นเอง

รูปที่ ๕ เป็นบทความเกี่ยวกับการเตรียมอนุภาคเซรามิกขนาดเล็กด้วยเทคนิค spray dryer เพื่อใช้ในงานทั่วไป เช่น เป็นวัสดุแม่เหล็ก ใช้ในงานด้านทัศนศาสตร์ หรือเป็นตัวเร่งปฏิกิริยา (ไม่มีการกล่าวถึงงานทันตกรรม)

รูปที่ ๕ บทความนี้ทดลองเตรียมวัสดุเซรามิกด้วยเทคนิค spray drying โดยสามารถเตรียมให้มีขนาดอนุภาคเล็กกว่า 10 ไมโครเมตรได้ PVA ในรูปคือ polyvinyl alcohol

บทความในรูปที่ ๔ และ ๕ แม้จะตีพิมพ์ห่างกัน ๑๓ ปี ลงในวารสารต่างสาขาวิชากัน ด้วยคณะวิจัยต่างกัน แต่ก็มาจากห้องปฏิบัติการเดียวกัน แสดงว่าห้องปฏิบัติการนี้ศึกษาเรื่องผงอนุภาคขนาดเล็กอย่างต่อเนื่องเป็นเวลานาน (คือในแง่คนขายเครื่องมือเขาจะดูว่าซื้อเอาไปทำวิจัยเรื่องเกี่ยวกับอะไร)

อาวุธชีวภาพตัวหนึ่งที่สามารถนำมาใช้ในรูปแบบละอองฟุ้งอยู่ในอากาศแล้วให้หายใจเข้าไปคือเชื้อแอนแทรกซ์ (anthrax) จุดเด่นของเชื้อนี้คือเมืออยู่ในรูปที่เป็นสปอร์ (spore) สามารถทนอยู่ในดินได้นานหลายสิบปี และในสภาวะที่แห้งจะทนอุณหภูมิได้สูงถึง 140ºC เป็นเวลาหลายชั่วโมง แต่ถ้ามีความชื้นด้วยเช่นต้มในน้ำร้อน 100ºCจะถูกทำลายใน 5-30 นาที (https://www.vibhavadi.com/Health-expert/detail/258) แม้ว่าเชื้อนี้สามารถเข้าสู่ร่างกายทางบาดแผลหรือรับประทานเข้าไปก็ได้ แต่ถ้ารับด้วยการหายใจเข้าไป อัตราส่วนการจายจะสูงถึง 80-90% ในเวลา 3-5 วันหลังได้รับเชื้อ (http://www.correct.go.th/meds/index/Download/การกลับมาของโรคแอนแทรกซ์.pdf)

รูปที่ ๖ เป็นหน้าที่สองของโจทย์ที่ได้รับมา (เป็นข้อมูลเพิ่มเติมหลังจากตอบคำถามด้วยข้อมูลที่มีเพียงแค่หน้าที่หนึ่งเสร็จ) ลองอ่านแล้วลองพิจารณาดูว่า ถ้าต้องประสบกับเหตุการณ์อย่างนี้ จะดำเนินการอย่างไร

รูปที่ ๖ หน้าที่สองของโจทย์ที่ได้รับมา