วันอาทิตย์ที่ 19 มกราคม พ.ศ. 2568

หอกลั่นเมทานอลระเบิดจากเมทิลไฮโดรเปอร์ออกไซด์ MO Memoir : Sunday 19 January 2568

"ในการออกแบบกระบวนการผลิตนั้น จะมองเห็นเฉพาะปฏิกิริยาที่ต้องการนั้นไม่ได้ ต้องมองให้เห็นปฏิกิริยาข้างเคียงและปฏิกิริยาที่มีโอกาสเกิดขึ้นได้ทั้งหมด ไม่ว่าจะเป็นของสารแต่ละตัว ระหว่างสารที่ผสมกันอยู่ และระหว่างสารกับพื้นผิวที่มันสัมผัส เพราะถ้าเราละมันไว้ในการออกแบบ มันอาจก่อปัญหาในการผลิตจริงได้"

ข้อความในย่อหน้าข้างบนเป็นข้อความที่ผมมักบอกกับนิสิตที่เรียนเคมีอินทรีย์กับผม เวลาที่เขาสงสัยว่าวิศวกรรมเคมีเรียนเคมีอินทรีย์ไปทำไม ในเมื่อวิชาส่วนใหญ่ในหลักสูตรเป็นวิชาคำนวณที่เกี่ยวข้องกับการหาขนาดอุปกรณ์การผลิต แถมยังมีอาจารย์จำนวนไม่น้อยชอบบอกว่าเรียนไปก็ไม่ค่อยได้ใช้ เวลามีคนมาถามด้วยคำถามทำนองนี้ผมก็จะบอกเขาไปว่า ถ้าออกแบบด้วยการลอกกระบวนการที่มีอยู่แล้วของคนอื่น มันก็คงไม่ค่อยได้ใช้ เพราะทำแค่ลอกในสิ่งที่เขาทำมา แต่ถ้าต้องเริ่มต้นออกแบบกระบวนการใหม่จากศูนย์ มันตรงข้ามกัน

ดังเช่นเรื่องที่นำมาเล่าในวันนี้ เป็นกรณีของปฏิกิริยาข้างเคียงที่ไม่คาดคิดว่าจะเกิด แต่ทำให้เกิดหายนะได้

เรื่องที่นำมาเล่าในวันนี้นำมาจากบทความเรื่อง "Explosion of methanol distillation column of detergent manufacturing plant" โดย Mitsuru Arai และคณะ เผยแพร่ในเว็บ Failure Knowledge Databaese : 100 Selected Cases (https://www.shippai.org/fkd/en/lisen/hyaku_lisen.html) เป็นเหตุการณ์ที่เกิดขึ้นในประเทศญี่ปุ่นเมื่อวันที่ ๒๖ มิถุนายน ค.ศ. ๑๙๙๑ (พ.ศ. ๒๕๓๔) ณ โรงงานผลิตสารซักฟอก (detergent) แห่งหนึ่ง

รูปที่ ๑ แผนผังกระบวนการผลิตของโรงงานที่เกิดเหตุ

โครงสร้างโมเลกุลของสารซักฟอกประกอบด้วยโครงสร้างที่มีขั้วที่ปลายข้างหนึ่ง (ใช้สำหรับการละลายน้ำ) และสายโซ่โมเลกุลที่เป็นส่วนไม่มีขั้ว (ใช้สำหรับการละลายไขมันและโมเลกุลที่ไม่มีขั้ว) สารซักฟอกสังเคราะห์หลักที่เราใช้กันนั้น โครงสร้างส่วนที่มีขั้วอาจเป็นหมู่คาร์บอกซิเลต (carboxylate R-COO-) หรือซัลโฟเนต (sulphonate R-SO2O-) ข้อดึของหมู่ซัลโฟเนตเหนือหมู่คาร์บอกซิเลตคือ หมู่ซัลโฟเนตไม่จับกับไอออนที่มีประจุ 2+ ที่อยู่ในน้ำ (หลัก ๆ ก็คือ Ca2+ หรือ Mg2+ ที่พบในน้ำกระด้าง) ตกตะกอนออกมาดังเช่นที่เกิดกับหมู่คาร์บอกซิเลต

โครงสร้างโมเลกุลของส่วนที่ไม่มีขั้วนั้น กลุ่มหนึ่งประกอบด้วยวงแหวนเบนซีนที่มีหางเป็นสายโซ่ไฮโดรคาร์บอน เช่น Linear Alkyl Benzene Sulphonate (LAS) หรือ Alkyl Benzene Sulphonate (ABS) LAS เป็นสารตัวหลักในกลุ่มนี้ที่ใช้กันอยู่ในปัจจุบัน ด้วยการที่มันย่อยสลายได้ง่ายกว่า ABS แต่ LAS ก็ยังมีข้อเสียคือประกอบด้วยโครงสร้างวงแหวนเบนซีนที่ย่อยสลายได้ยาก มีเฉพาะส่วนสายโซ่ไฮโดรคาร์บอนโซ่ตรงเท่านั้นที่ย่อยสลายได้ง่าย

กลุ่มที่สองนั้นเป็นสายโซ่ไฮโดรคาร์บอนโซ่ตรง สารกลุ่มนี้มีการใช้งานน้อยกว่า (น่าจะเป็นด้วยเรื่องราคา) แต่ก็มีข้อดีคือการที่มันไม่มีโครงสร้างวงแหวนเบนซีน ทำให้การย่อยสลายนั้นเกิดได้สมบูรณ์กว่า

แหล่งที่มาสำคัญของสายโซ่ไฮโดรคาร์บอนโซ่ตรงคือกรดไขมันจากพืชและสัตว์ โดยจะอยู่ในรูปโครงสร้างสารประกอบเอสเทอร์กับกลีเซอรีน (glycerine หรือบางทีก็เรียกว่ากลีเซอรอล glycerol) ที่เรียกว่าไตรกลีเซอไรด์ (triglyceride) การแยกสายโซ่นี้ออกมาทำได้ด้วยการใช้ปฏิกิริยาทรานเอสเทอริฟิเคชัน (transesterification) กับเมทานอล (methanol) โดยผลิตภัณฑ์ที่ได้คือเมทิลเอสเทอร์ของสารโซ่ไฮโดรคาร์บอน และกลีเซอรีน

โรงงานที่เกิดเหตุนั้นเดิมสร้างเพื่อผลิต ABS แต่ต่อมาได้รับการปรับเปลี่ยนให้ผลิตโดยใช้ไขมันจากธรรมชาติ โดยเริ่มเดินเครื่องการผลิตใหม่ในวันที่ ๑๑ กุมภาพันธ์ ค.ศ. ๑๙๙๑ (พ.ศ. ๒๕๓๔) ซึ่งก็คือปีที่เกิดเหตุ กระบวนการผลิตใหม่ประกอบด้วยการนำวัตถุดิบคือเมทิลเอสเทอร์ของกรดไขมันมาทำปฏิกิริยากับกรดกำมะถัน (รูปที่ ๑) จะได้สารประกอบ alkyl sulphonic acid และเมทานอลที่แยกออกมา จากนั้นจะทำการเติมไฮโดรเจนเปอร์ออกไซด์ (H2O2) เข้มข้น 35% เพื่อทำการฟอกสีผลิตภัณฑ์ (ขั้นตอน bleaching) ขั้นตอนต่อไปคือทำการสะเทินกรดที่เหลืออยู่ด้วยเบส (ขั้นตอน neutralization) ก่อนที่จะถูกส่งต่อไปยังขั้นตอนการทำให้เข้มข้นและแยกผลิตภัณฑ์เพื่อแยกผลิตภัณฑ์และสารผสม น้ำ+เมทานอล และส่งสารผสมดังกล่าวไปทำการกลั่นแยกน้ำและเมทานอลออกจากกัน

จุดเด่นของกระบวนการนี้คือการใช้เมทานอลร่วมกับไฮโดรเจนเปอร์ออกไซด์ในการฟอกสีผลิตภัณฑ์ ซึ่งทางบริษัทถือว่าเป็นนวัตกรรมใหม่ของทางบริษัท

นับตั้งแต่ปลายปีค.ศ. ๑๙๙๐ (พ.ศ. ๒๕๓๓) ทางโรงงานได้มีการทดสอบการทำงานของหอกลั่น และเมื่อเริ่มเดินเครื่องการผลิตในต้นปีค.ศ. ๑๙๙๑ ก็ได้มีการเดินเครื่องเพื่อผลิตและหยุดเดินเครื่องรวมทั้งสิ้น ๖ ครั้ง โดยถือว่าเป็นการฝึกพนักงานและทำการปรับค่าปริมาณสารในระบบ และในระหว่างการเดินเครื่องผลิตแต่ละทางโรงงานก็ได้มีการหยุดเดินเครื่องหลายครั้ง โดยปัญหาส่วนใหญ่เกิดจากความเข้มข้นของสารในกระบวนการ

การเริ่มเดินเครื่องการผลิตครั้งที่แปด เริ่มในเวลา ๒๑.๓๕ น ของวันที่ ๑๙ มิถุนายน ในขณะนั้นหอกลั่นแยกเมทานอลทำงานในสภาวะ "total reflux" (คือไม่มีการดึงของเหลวที่ควบแน่นที่ยอดหอออกจากระบบ แต่ป้อนกลับเข้าหอกลั่นทั้งหมด) และเริ่มเดินเครื่องหน่วย sulfonation process และเมื่อเวลาประมาณ ๒.๓๐ น ของวันที่ ๒๐ มิถุนายน ก็เริ่มมีการป้อนสารจาก sulfonation process เข้าสู่หอกลั่นแยกเมทานอล

เวลาประมาณ ๑.๒๐ น ของวันที่ ๒๖ มิถุนายนพบว่าตัววัดพีเอขของหน่วย neutralization process ไม่ทำงาน ซึ่งแสดงให้เห็นว่าการทำงานของระบบควบคุมอัตโนมัติก่อนหน้านั้นอิงอยู่บนค่าการวัดที่ผิดพลาด ส่งผลให้ผลิตภัณฑ์ที่ออกจากหน่วย neutralization process นั้นมีค่าพีเอชในช่วงกรด (แสดงว่าก่อนหน้านั้นมีการป้อนสารละลายโซเดียมไฮดรอกไซด์นั้นน้อยเกินไป) จึงได้ทำการปรับการควบคุมเป็น manual และทำการเติมไฮโดรเจนเปอร์ออกไซด์และโซเดียมไฮดรอกไซด์ตามค่าพีเอชที่วัดได้

ทางโรงงานเริ่มดำเนินกระบวนการหยุดเดินเครื่องเพื่อซ่อมอุปกรณ์วัดค่าพีเอช และเมื่อถึงเวลา ๙.๑๕ น หอกลั่นแยกเมทานอลก็ทำงานในภาวะ "total reflux" อีกครั้ง

เวลา ๑๐.๑๕ น เกิดการระเบิดที่ส่วนบนของหอกลั่นแยกเมทานอล แรงระเบิดทำให้หอกลั่นได้รับความเสียหายตามด้วยเพลิงไหมติดตามมา แรงระเบิดมีค่าประมาณเทียบเท่าระเบิด TNT 10-50 กิโลกรัม สะเกิดที่ปลิวออกไปทำให้มีผู้เสียขีวิต ๒ รายและบาดเจ็บ ๑๓ ราย

รูปที่ ๒ รูปซ้ายแสดงตำแหน่งของหอกลั่นที่เกิดการระเบิด รูปขวาเป็นภาพถ่ายหอกลั่นหลังการระเบิด

การสอบสวนพบว่าสาเหตุของการระเบิดเกิดจากการสะสมของเมทิลไฮโดรเปอร์ออกไซด์ (H3C-O-O-H methyl hydroperoxide) บริเวณตำแหน่ง tray ที่ 26 ในปริมาณมาก และเมื่อสารนี้สลายตัวอย่างรวดเร็วทำให้เกิดการคายความร้อนปริมาณมากในเวลาอันสั้น ส่งผลให้ของเหลวในบริเวณดังกล่าวกลายเป็นไอในปริมาณมากในเวลาอันสั้น ความดันในหอกลั่นเพิ่มสูงขึ้นอย่างรวดเร็วจนทำให้หอกลั่นระเบิด

ว่าแต่เมทิลไฮโดรเปอร์ออกไซด์มาจากไหน

เมทานอลสามารถทำปฏิกิริยากับกรดกำมะถัน (ปฏิกิริยา esterification) ได้สารประกอบไดเมทิลซัลเฟต (dimethyl sulphate) เป็นผลิตภัณฑ์ดังสมการ

2H3C-OH + H2SO4 -----> H3C-O-S(O)2-O-CH3

ไดเมทิลซัลเฟตสามารถทำปฏิกิริยากับไฮโดรเจนเปอร์ออกไซด์โดยมีเบสร่วม (ดูตัวอย่างวิธีการเตรียมในรูปที่ ๓) จะได้เมทิลไฮโดรเปอร์ออกไซด์และไดเมทิลเปอร์ออกไซด์ (dimethyl peroxide H3C-O-O-CH3 ) ที่เป็นผลิตภัณฑ์ข้างเคียง

รูปที่ ๓ วิธีการเตรียมเมทิลไฮโดรเปอร์ออกไซด์

ไฮโดรเจนเปอร์ออกไซด์ (รวมทั้งเมทิลไฮโดรเปอร์ออกไซด์) เป็นสารที่ไม่เสถียร แต่ในช่วงพีเอชที่เป็นกรดนั้นจะมีเสถียรภาพสูงขึ้น (ดูหมายเหตุเพิ่มเติมข้างล่าง) ในขณะที่ในช่วงพีเอขที่เป็นเบสนั้นจะเร่งการสลายตัว การป้อนสารละลายโซเดียมไฮดรอกไซด์น้อยเกินไป (ผลจากอุปกรณ์วัดค่าพีเอชไม่ทำงาน) ทำให้เปอร์ออกไซด์ที่เกิดขึ้นนั้นไม่ถูกทำลายในขั้นตอน neutralization แต่ระเหยกลายเป็นไอปนไปกับน้ำและเมทานอลที่ป้อนเข้าสู่หอกลั่นแยกเมทานอล การที่ค่าพีเอชในขั้นตอน neutralization อยู่ในช่วงที่เป็นกรดนานต่อเนื่องกันหลายวัน จึงทำให้เกิดเมทิลไฮโดรเปอร์ออกไซด์ในปริมาณที่มากขึ้น และเมื่อหอกลั่นเดินเครื่องในสภาวะ total reflux จึงไม่มีการดึงเอาเมทิลไฮโดรเปอร์ออกไซด์ออกจากหอกลั่น ผลการทำ simulation สารผสม น้ำ-เมทานอล-เมทิลไฮโดรเปอร์ออกไซด์แสดงให้เห็นว่าการสะสมจเกิดมากที่สุดที่บริเวณ tray ที่ 26 ที่เกิดการระเบิด

(หมายเหตุเพิ่มเติม : จากประสบการณ์ที่เคยทำการทดลองกับไฮโดรเจนเปอร์ออกไซด์ กรดที่แตกตัวให้ H+ เช่น H2SO4 และ H3PO4 ช่วยลดการสลายตัวของไฮโดรเจนเปอร์ออกไซด์ แต่ถ้าเป็น HCl จะเร่งการสลายตัว (ปัญหาอยู่ที่ Cl-) ไอออนบวกที่มีความป็นกรดสิวอิสที่แรงพอ ก็จะเร่งการสลายตัวของไฮโดรเจนเปอร์ออกไซด์เช่นกัน ดังนั้น "ห้าม" จำว่าสภาวะที่ค่าพีเอชเป็นกรดนั้น จะเพิ่มเสถียรภาพของเปอร์ออกไซด์เสมอ)

ไม่มีความคิดเห็น: