หมายเหตุ : เนื้อหาในบทความชุดนี้อิงจากมาตราฐาน API 2000 7th Edition, March 2014. Reaffirmed, April 2020 โดยมีวัตถุประสงค์เพื่อเป็นพื้นฐานในการทำความเข้าใจ ดังนั้นถ้าจะนำไปใช้งานจริงควรต้องตรวจสอบกับมาตรฐานฉบับล่าสุดที่ใช้ในช่วงเวลานั้นก่อน
ต่อไปขอเริ่มหัวข้อ A.3.3 ซึ่งเป็นเรื่องเกี่ยวกับผลกระทบจากการเปลี่ยนแปลงอุณหภูมิ (รูปที่ ๑)
หัวข้อ A.3.3.1 กล่าวว่าควรนำเอาการเปลี่ยนแปลงปริมาตรที่เกิดจากการเปลี่ยนแปลงอุณหภูมิมาร่วมพิจารณา ในการกำหนดความสามารถในการระบายในสภาวะปรกติ แหล่งหลักของการเปลี่ยนแปลงปริมาตรเหล่านี้มีดังนี้
- การเปลี่ยนแปลงอุณหภูมิอากาศ ที่ส่งผลให้เกิดการถ่ายเทความร้อนกับส่วนที่เป็นไอ
- การเปลี่ยนแปลงอุณหภูมิของของเหลวภายใน ที่ส่งผลให้เกิดการถ่ายเทความร้อนกับส่วนที่เป็นไอ
ตรงนี้ขอขยายความเพิ่มเติม ความจุความร้อนของแก๊สหรือไอนั้นต่ำกว่าของเหลวมาก ด้วยปริมาณความร้อนที่ให้เท่ากัน ไอจะมีอุณหภูมิเพิ่มมากกว่าของเหลว และปริมาณไอหรือแก๊สก็เพิ่มตามอุณหภูมิด้วย ตัวอย่างเช่นถ้ามีถังที่มีของเหลงบรรจุอยู่และตั้งตากแดด ถ้าเราเอามือไปแตะผนังโลหะของถัง จะพบว่าผิวโลหะส่วนที่อยู่ใต้ระดับของเหลวนั้นจะเย็นกว่าผิวโลหะส่วนที่อยู่เหนือระดับผิวของเหลว การเปลี่ยนแปลงอุณหภูมิอากาศจึงส่งผลต่อส่วนที่เป็นไอมากกว่า
ส่วนการเปลี่ยนแปลงอุณหภูมิของเหลวอาจเกิดจากการป้อนของเหลวที่มีอุณหภูมิแตกต่างไปจากของเหลวที่บรรจุอยู่ก่อนหน้าในถัง ในกรณีที่ป้อนของเหลวที่ร้อนกว่าเข้าไป ความร้อนจากของเหลวใหม่ที่ป้อนเข้าไปนอกจากจะทำให้ส่วนที่เป็นไอมีอุณหภูมิเพิ่มขึ้นแล้ว ก็ยังทำให้การระเหยของของเหลวที่บรรจุอยู่นั้นเพิ่มขึ้นด้วย
หัวข้อ A.3.3.2 กล่าวว่า สำหรับของเหลวทีเป็นผลิตภัณฑ์ปิโตรเลียมทั่วไป การถ่ายเทความร้อนให้กับส่วนที่เป็นไอนั้นไม่ได้รับการคาดหวังว่าจะก่อให้เกิดการควบแน่นของส่วนที่เป็นไอ โดยเฉพาะอยางยิ่งเมื่อปริมาตรที่ว่างของส่วนที่เป็นไอนั้นมีแก๊สที่ไม่ควบแน่นอยู่ในปริมาณที่มีนัยสำคัญ การไม่มีการควบแน่นของไอในระหว่างการเย็นตัวลงเป็นข้อสมมุติที่สำคัญในการประยุกต์การใช้งานแนวปฏิบัติในภาคผนวกนี้
รูปที่ ๑ เริ่มต้นหัวข้อ A.3.3 ผลกระทบจากการเปลี่ยนแปลงอุณหภูมิ
หัวข้อ A.3.3.3 (รูปที่ ๒) ในหลายกรณีด้วยกัน การเย็นตัวลงอย่างรวดเร็วที่เกิดจากการเปลี่ยนแปลงสภาพแวดล้อมกระทันหันถือว่าเป็นกรณีควบคุมสำหรับการถ่ายเทความร้อนไปยังปริมาตรที่ว่างที่เป็นไอภายในถัง อัตราการเปลี่ยนแปลงปริมาตรจะมีค่ามากที่สุดที่ปริมาตรที่ว่างที่เป็นไอภายในถังมีค่ามากที่สุด และเป็นขณะที่อุณหภูมิการทำงานมีค่าสูงสุด ดังนั้นในการคำนวณจะพิจารณาว่าถังนั้นเป็นถังเปล่าและมีอุณหภูมิที่ค่าอุณหภูมิการทำงานสูงสุด
ในย่อหน้านี้กล่าวถึงการเปลี่ยนแปลงสภาพอากาศแวดล้อมกระทันหัน จากอากาศเย็นเปลี่ยนเป็นร้อนจัดกระทันหันมันไม่มีการเกิด แต่จากอากาศร้อนจัดเปลี่ยนเป็นเย็นกระทันหันนั้นมันเกิดได้ เช่นในวันที่ถังตากแดดมาทั้งวัน พอตอนเย็นก็มีพายุฝนเข้ามา น้ำฝนที่ตกลงมาก็ทำให้ปริมาตรที่ว่างที่เป็นไอภายในถังมีอุณหภูมิลดลงอย่างรวดเร็ว ดังนั้นการหดตัวจะมีค่ามากที่สุดก็ต่อเมื่อถังนั้นเป็นถังเปล่า และอยู่ที่ค่าอุณหภูมิการทำงานสูงสุด ในการออกแบบจึงให้ใช้เงื่อนไขนี้ในการคำนวณ
เป็นที่ยอมรับกันว่าในภาคตะวันตกเฉียงใต้ของสหรัฐอเมริกา ถังเก็บสามารถเย็นตัวลงอย่างรวดเร็วเมื่อเกิดพายุฝนกระทันหันในวันที่อากาศร้อนและแดดจ้า ในการเกิดสภาวะสุญญากาศนั้นพบว่าส่วนหลังคาสามารถมีอุณหภูมิลดต่ำลงจากเดิมได้ถึง 33ºC (หรือ 60ºF) และส่วนผนังลำตัวสามารถเย็นตัวลงจากเดิมได้ถึง 17ºC (หรือ 30ºF) (หน่วยอุณหภูมิเคลวิน K และแรงคิน ºR คือหน่วยอุณหภูมิสัมบูรณ์ โดยช่วง 1 K = 1ºC และ 1ºR = 1ºF)
การถ่ายเทความร้อนจากที่ว่างส่วนที่เป็นไอไปยังพื้นผิวที่เย็นตัวลง (คือส่วนหลังคาและผนังลำตัว) ซึ่งถือได้ว่าเป็นพื้นผิวที่มีอุณหภูมิคงที่เนื่องจากสามารถคาดการณ์ได้ว่าน้ำฝนที่ตกลงมานั้นให้การหล่อเย็นที่เพียงพอบนพื้นผิวด้านนอกของถัง อาจพิจารณาได้ว่าการถ่ายเทความร้อนจากที่ว่างส่วนที่เป็นไอมีรูปแบบเป็นการพาความร้อนแบบอิสระ สัมประสิทธิ์การถ่ายเทความร้อนเป็นตัวแปรที่สำคัญในการคำนวณ แต่ก็เป็นการยากที่จะทำนายค่าสัมประสิทธิ์การถ่ายเทความร้อนนี้ได้อย่างแม่นยำและถูกต้อง เนื่องจากการเลือกค่าสหสัมพันธ์ที่ใช้ในการระบุค่าสัมประสิทธิ์การถ่ายเทความร้อนนั้นขึ้นอยู่อย่างมากกับ ชนิดของไหล, รูปแบบทางกายภาพ และคราบต่าง ๆ บนผนังที่เกี่ยวข้อง
การหาการเย็นตัวลงของที่ว่างส่วนที่เป็นไออาจอิงจากอัตราการถ่ายเทความร้อนสูงสุดหรืออัตราการเปลี่ยนแปลงอุณหภูมิสูงสุด ด้วยความไม่แน่นอนที่เป็นธรรมชาติของค่าสัมประสิทธิ์การถ่ายเทความร้อนนี้ จึงไม่คาดว่าด้วยการใช้เงื่อนไขขอบเขตทั้งสองจะนำไปสู่ความไม่แน่นอนที่ไม่สามารถยอมรับได้เพิ่มเติมเข้ามา
รูปที่ ๒ เริ่มหัวข้อ A.3.3.3 (ยังมีต่อ)
อาจใช้ค่าอัตราการถ่ายเทความร้อนสูงสุด 63 W/m2 (20 Btu/h.ft2) เป็นเงื่อนไขค่าขอบเขต
อาจใช้ค่าอัตราการเปลี่ยนแปลงอุณหภูมิสูงสุด 56 K/h (100ºR/h) เป็นเงื่อนไขค่าขอบเขต (เย็นตัวลง)
อัตราการเปลี่ยนแปลงปริมาตร (V dot) อันเป็นผลจากผลกระทบจากการเปลี่ยนแปลงอุณหภูมิ สามารถคำนวณได้โดยใช้สมการ A.1, A.2 และ A.3 (รูปที่ ๓) โดยที่
V dot คืออัตราการเปลี่ยนแปลงปริมาตรในหน่วย m3/s (ft3/hr)
n คือจำนวนโมลเริ่มต้นในปริมาตรส่วนที่เป็นที่ว่างภายในถังในหน่วย kmol (lbmol) (กิโลโมลหรือปอนด์โมล)
Rg คือค่าคงที่ของแก๊สสัมบูรณ์ซึ่งมีค่า 8.3145 kPa.m3/kgmol.K (1545 ft.lbf/ºR.lbmol)
ในระบบ SI หน่วยของมวลคือกิโลกรัม kg และหน่วยของแรงคือนิวตัน N
ในระบบอังกฤษ หน่วยของมวลคือ pound mass (lbm) หน่วยของแรงคือ pound force (lbf)
รูปที่ ๓ หัวข้อ A.3.3.3 (ต่อ)
T คืออุณหภูมิในหน่วย ºC (หรือ ºF)
คือเวลาในหน่วยวินาที (ชั่วโมง)
T0 คืออุณหภูมิเริ่มต้น ซึ่งสมมุติให้มีค่า 48.9 ºC (หรือ 120 ºF)
∆T คือผลต่างอุณหภูมิสูงสุด คำนวณได้จาก T0 - Tw
Tw คืออุณหภูมิของผนัง ซึ่งสมมุติให้มีค่า 15.6 ºC (หรือ 60 ºF)
h คือค่าสัมประสิทธิการถ่ายเทความร้อนในหน่วย W/m2.K (Btu/h.ft2.ºR)
Aexp คือพื้นที่ผิวถ่ายเทความร้อน m2 (ft2) (คือเฉพาะส่วนที่อยู่เหนือผิวของเหลว และต้องคำนึงถึงส่วนหลังคาด้วย)
Cp คือค่าความจุความร้อนโดยโมลที่ความดันคงที่ในหน่วย J/kgmol.K (Btu.lbmol.ºR)
Vtk คือปริมาตรของถังเก็บ m3 (ft3)
รูปที่ ๔ หัวข้อ A.3.3.3 (ต่อ)
ต่อไปเป็นรูปที่ ๔ สำหรับถังที่มีขนาดเล็กกว่า 3,180 m3 (20,000 bbl) ค่าความสามารถในการระบายที่ต้องมีอันเป็นผลจากการหดตัวเนื่องจากอุณหภูมิที่ลดต่ำลง ถูกจำกัดด้วยอัตราการเปลี่ยนแปลงอุณหภูมิสูงสุดที่ 56 K/h (100 ºR/h) ของปริมาตรที่ว่างส่วนที่เป็นไอ ด้วยการใช้ค่าอุณหภูมิเริ่มต้น 48.9 ºC (120 ºF) จะได้ค่าความสามารถในการระบายมีค่าประมาณเท่ากับ 0.169 Nm3 ของอากาศต่อลูกบาศก์เมตร (มาจาก 1 SCFH ของอากาศต่อบาร์เรล) ของปริมาตรถังเปล่า
สำหรับถังที่มีปริมาตรเท่ากับหรือใหญ่กว่า 3,180 m3 (20,000 bbl) ค่าความสามารถในการระบายอันเป็นผลจากการหดตัวที่เกิดจากอุณหภูมิที่ลดต่ำลงถูกจำกัดด้วยอัตราการถ่ายเทความร้อน (h∆T) ที่ 63 W/m2 (20 But/h.ft2) อัตราการระบายที่แสดงในตาราง A.3 และ A.4 (รูปที่ ๕ และ ๖) สำหรับถังที่มีปริมาตรมากกว่า 3180 m3 (20,000 bbl) ถูกระบุโดยเริ่มจากการคำนวณอัตราการระบายสำหรับถังที่มีขนาดใหญ่ที่สุดที่ได้แสดงไว้ อัตราการระบายสำหรับถังขนาด 30,000 m3 (180,000 bbl) ได้มาจากการสมมุติค่า พื้นที่ผิว 4,324 m2 (45,000 ft2), อัตราการถ่ายเทความร้อน 63 W/m2 (20 Btu/h.ft2), อุณหภูมิเริ่มต้น 48.9 ºC (120 ºF), และใช้ค่าคุณสมบัติของอากาศที่ความดันบรรยากาศเป็นตัวแทนแก๊สที่อยู่ในปริมาตรที่ว่างส่วนที่เป็นไอ ค่าความสามารถในการระบายที่คำนวณได้มีค่าประมาณเท่ากับ 0.61 m3/h ของอากาศต่อตารางเมตร (มาจาก 2 ft3/h ของอากาศต่อตารางฟุต) ของพื้นที่ผิวที่มีการถ่ายเทความร้อน สำหรับถังที่มีขนาดใหญ่ที่สุดนั้น ค่าความสามารถในการระบายนี้จะเทียบเท่ากับอัตราการเปลี่ยนแปลงอุณหภูมิของปริมาตรที่ว่างส่วนที่เป็นไอที่ 28 K/h (50 ºR/h) อัตราการระบายของถังที่มีความจุระหว่าง 3,180 m2 (20,000 bbl) และ 30,000 m2 (180,000 bbl) จะประมาณโดยอิงจากค่าอัตราการระบายที่กำหนดโดยขนาดถังทั้งสองนี้
สำหรับถังที่มีขนาดใหญ่มากที่มีปริมาตรสูงเกินกว่า 30,000 m2 (180,000 bbl) คาดวาอัตราการถ่ายเทความร้อนจะมีความซับซ้อนมากกว่าการประมาณอย่างง่ายที่แสดงไว้ในภาคผนวกนี้ ดังนั้นผู้ใช้ควรอ้างอิงไปยังเนื้อหาหลักของมาตรฐานนี้สำหรับเป็นแนวทางที่เหมาะสม
สภาพแวดล้อมของอากาศภายนอกที่นำมาใช้ในการคำนวณค่าที่แสดงในตารางข้างต้น จะสมมุติให้เป็นที่สภาวะมาตรฐานคือที่ 15.6 ºC และ 101.3 kPa (60 ºF และ 14.7 psia)
คำอธิบายในตาราง A.3
a การประมาณค่าในช่วงทำได้สำหรับถังที่มีความจุอยู่ในช่วงระหว่างค่าที่แสดงไว้ ภาคผนวกนี้ไม่ครอบคลุมถังที่มีความจุสูงเกินกว่า 30,000 m2 แนวปฏิบัติในภาคอุตสาหกรรมคือการใช้ปริมาตรของเหลวสูงสุด (ปริมาตรที่ไม่รวมส่วนหลังคาถัง) ในการกำหนดอัตราการระบายอากาศเข้า/ออก ค่าต่าง ๆ ในแต่ละหลักไม่ได้มาจากการเปลี่ยนหน่วยจากค่าในตาราง A.4 แต่เป็นค่าที่ถูกเลือกให้ใกล้เคียงกับปริมาตรที่แสดงไว้ในตาราง A.4 แต่ค่าอัตราการระบายจะอิงจากการคำนวณโดยตรงโดยใช้ค่าปริมาตรที่เลือกมา
คือหน่วยที่ใช้ในสหรัฐอเมริกามาแต่เดิมหรือหน่วยระบบอังกฤษ แต่พอจะปรับตัวเลขต่าง ๆ ที่เป็นเลขลงตัวในระบบอังกฤษให้เป็นเลขในระบบเมตริกที่เท่ากัน ทำให้เลขในระบบเมตริกนั้นมีจุดทศนิยมปรากฏขึ้น (ที่เห็นชัดคือค่าอุณหภูมิ) แต่ในส่วนของปริมาตรถัง เมื่อเปลี่ยนตัวเลขที่เป็นเลขลงตัวในระบบอังกฤษมาเป็นค่าในระบบเมตริก เลขในระบบเมตริกที่ได้มันจะมีจุดทศนิยมเกิดขึ้น จึงมีการปรับตัวเลขปริมาตรให้เป็นเลขกลม ๆ (คือเลขลงตัวที่ลงท้ายด้วยศูนย์) ที่ใกล้เคียงกับค่าในระบบอังกฤษ จากนั้นจึงใช้ตัวเลขกลม ๆ ที่ได้จากการปรับนั้นไปทำการคำนวณค่าความสามารถในการระบายที่ต้องมี
b ข้อมูลที่เกี่ยวข้องกับฐานที่ใช้ในการคำนวณเหล่านี้อิงจากหัวข้อ A.3.3
c สำหรับของเหลวที่มีค่าจุดวาบไฟ 37.8C หรือสูงกว่า อัตราการระบายออกที่ต้องมีกำหนดให้เท่ากับ 60% ของค่าอัตราการระบายเข้าที่ต้องมี ข้อมูลที่เกี่ยวข้องกับฐานที่ใช้ในการคำนวณเหล่านี้อิงจากหัวข้อ A.3.3
d สำหรับของเหลวที่มีค่าจุดวาบไฟต่ำกว่า 37.8C อัตราการระบายออกที่ต้องมีกำหนดให้เท่ากับค่าอัตราการระบายเข้าที่ต้องมี เพื่อยอมให้มีการระเหยกลายเป็นไอที่ผิวหน้าของเหลว และสำหรับไอภายในถังที่มีค่าความหนาแน่นจำเพาะที่สูงกว่า ข้อมูลที่เกี่ยวข้องกับฐานที่ใช้ในการคำนวณเหล่านี้อิงจากหัวข้อ A.3.3
คำอธิบายในตาราง A.4 นั้นเหมือนกับของตาราง A.3 ต่างกันเพียงแค่ใช้หน่วยระบบอังกฤษ
ต่อไปเป็นหัวข้อ A.3.3.4 (รูปที่ ๗) สำหรับการถ่ายเทความร้อนจากสภาพแวดล้อมภายนอกที่ส่งผลให้เกิดการเพิ่มขึ้นของอุณหภูมิในปริมาตรส่วนที่เป็นไอ อัตราการขยายตัวนี้คาดว่าจะต่ำกว่าอัตราการหดตัวมาก เนื่องจากการให้ความร้อนจากสภาพอากาสภายนอกนั้นไม่ได้เกิดขั้นอย่างรวดเร็ว ในกรณีเหล่านี้การเพิ่มอุณหภูมิของปริมาตรที่ว่างส่วนที่เป็นไอที่เกิดจากอุณหภูมิของเหลวนั้นจะให้ผลกระทบที่สูงกว่า อย่างไรก็ตามสิ่งนี้จำเป็นสำหรับถังที่มีของเหลวเติมเต็มบางส่วน (ทำให้มันมีปริมาตรที่ว่างส่วนที่เป็นไอเยอะ) นอกจากนี้อุณหภูมิของเหลวที่เพิ่มสูงขึ้นยังส่งผลให้ของเหลวนั้นระเหยกลายเป็นไอได้บางส่วนถ้าของเหลวนั้นเป็นของเหลวที่ระเหยได้ง่าย
ในกรณีของของเหลวที่ไม่ได้ระเหยง่าย อาจประมาณให้อัตราการขยายตัวโดยปริมาตรมีค่าเท่ากับ 60% ของอัตราการหดตัวโดยปริมาตรที่เกิดจากการถ่ายเทความร้อนจากสภาพแวดล้อมภายนอก และให้มีค่าประมาณ 100% ของอัตราการหดตัวโดยปริมาตรในกรณีของของเหลวที่ระเหยได้ง่าย
ในการตั้งเกณฑ์ที่กล่าวมาข้างต้นนั้น เป็นที่รับรู้ว่าความต้องการสำหรับการระบายออกนั้นใช้เกณฑ์ที่ค่อนข้างอนุรักษ์นิยม อย่างไรก็ตามสำหรับผู้ที่เป็นอนุรักษ์นิยมบางรายจะเชื่อว่าควรต้องนำเอาทั้งสภาพอากาศและผลิตภัณฑ์ที่ผิดปรกติเข้ามาร่วมการพิจารณา โดยเฉพาะพวกที่สามารถให้ไอระเหยที่สูงกว่าน้ำมันแก๊สโซลีน นอกจากนี้ค่าใช้จ่ายสำหรับอุปกรณ์ระบายที่ใหญ่ขี้นนั้นมีค่าน้อยมากเมื่อเทียบกับราคาทั้งหมดของถังเก็บ แนวความคิดแบบอนุรักษ์นิยมนี้ยังเพิ่มขอบเขตความปลอดภัยถ้าอัตราการไหลเข้าของของเหลวนั้นสูงกว่าค่าที่ออกแบบเอาไว้ไม่มาก
สำหรับตอนนี้ก็คงจบเพียงแค่นี้
ไม่มีความคิดเห็น:
แสดงความคิดเห็น