วันจันทร์ที่ 6 มกราคม พ.ศ. 2568

ทำไมเวลาใช้ปลั๊กพ่วงควรต้องดึงสายให้สุด MO Memoir : Monday 6 January 2568

facebook กับ google เขาก็คู่ซี้กัน เวลาเราค้นหาอะไรด้วย google มันก็จะไปโผล่ใน facebook อย่างรวดเร็ว ดังนั้นถ้าใครยังเชื่อว่าประเทศนี้ไม่มีการดักล้วงข้อมูลต่าง ๆ ของเราก็ควรคิดทบทวนใหม่ได้แล้ว

ช่วงที่ผ่านมาทำการค้นหาข้อมูลเกี่ยวกับอุปกรณ์ไฟฟ้า มันก็เลยมีเพจที่เกี่ยวกับงานช่างไฟฟ้าไปโผล่ใน facebook เพจหนึ่งที่โผล่มาเขาบอกว่าข้อมูลของเขาได้รับการตรวจสอบความถูกต้องแล้ว ดังนั้นสามารถแชร์ต่อได้ เนื้อหาหนึ่งที่โผล่ขึ้นมาเป็นการตอบคำถามเกี่ยวกับปลั๊กพ่วง มันมีหลายคำถาม แต่คำถามที่ผมเห็นว่าน่าสนใจและหยิบมาเป็นประเด็นสนทนาในวันนี้อยู่ในรูปที่ ๑ ข้างล่าง ลองอ่านดูเองก่อนนะครับ

รูปที่ ๑ คำถาม (Q) และคำตอบ (A) ที่นำมาเป็นประเด็นสนทนาในวันนี้

ในเพจไม่ได้บอกว่าเป็นปลั๊กพวงแบบไหน แต่ดูแล้วน่าจะเป็นแบบล้อม้วนเก็บดังรูปที่ ๒ ซึ่งผู้ขายก็ระบุไว้ชัดเจนว่าถ้าดึงสายออกมาหมดจะสามารถใช้กับกำลังไฟได้สูงสุด 3600 W แต่ถ้าสายไฟยังม้วนขดอยู่ จะสามารถรองรับกำลังไฟได้สูงสุดเพียงแค่ 2200 W มันก็เลยเกิดคำถามว่าเพราะเหตุใด

ถ้าได้อ่านคำตอบในรูปที่ ๑ แล้ว ทีนี้ลองมาพิจารณาข้อเท็จจริงดูบ้าง คำถามนั้นแม้ไม่ได้ระบุความยาวสายไฟ แต่สำหรับคนทั่วไปอ่านแล้วจะเข้าใจว่าปลักพ่วงนั้นจะม้วนเก็บหรือดึงสายไฟออกมาจนหมด ความยาวสายไฟมันก็เท่าเดิมอยู่ดี ไม่ได้เปลี่ยนแปลงอะไร คำถามนั้นถามเรื่องความแตกต่างระหว่างเวลาที่สายไฟยังคงม้วนเก็บอยู่กับเวลาที่สายไฟนั้นถูกดึงออกจากม้วนจนหมด (ความยาวมันก็คงเดิมอยู่ดี) ทำไมจึงทำให้ปลั๊กรับกำลังไฟสูงสุดได้แตกต่างกัน ไม่ได้เกี่ยวกับความยาวสายไฟว่าสั้นหรือยาว

ปัญหามันอยู่ตรงที่ "ความร้อน" ที่เกิดขึ้นในสายไฟ และการระบายความร้อนออก ความร้อน (Ploss) ที่เกิดขึ้นในสายไฟนั้นมีค่าเท่ากับผลคูณของ กระแสไฟฟ้า (I) ยกกำลังสองกับความต้านทาน (R) หรือที่รู้จักกันในสูตร Ploss = I2R ในขณะที่กำลังไฟฟ้ามีค่าเท่ากับผลคูณของกระแสไฟฟ้ากับความต่างศักย์ หรือที่รู้จักกันในสูตร P = IV 

รูปที่ ๒ ปลั๊กพ่วงแบบล้อม้วนเก็บ

ดังนั้นเมื่อโหลดเพิ่มขึ้นสองเท่า กระแสก็จะไหลผ่านสายไฟเพิ่มขึ้น 2 เท่า (เพราะความต่างศักย์คงที่) แต่ปริมาณความร้อนที่เกิดขึ้นในสายไฟจะเพิ่มขึ้น "4 เท่า" แต่ตัวปัญหาก็คือความร้อนที่เกิดขึ้นตัวนี้

รูปที่ ๓ ปริมาณกระแสที่สายไฟรองรับได้ขึ้นอยู่กับรูปแบบการติดตั้งและจำนวนสายไฟในท่อร้อยสายไฟ (จากมาตรฐานวสท. การติดตั้งทางไฟฟ้าสำหรับประเทศไทย พ.ศ. ๒๕๖๔)

ความร้อนที่เกิดในตัวนำนั้นจะบายออกสู่ภายนอกผ่านทางฉนวนหุ้ม ปริมาณกระแสที่สายไฟจะรับได้ก็ยังขึ้นอยู่กับการระบายความร้อนตรงนี้ด้วย ตัวอย่างเช่นที่นำมาแสดงในรูปที่ ๓ สายไฟขนาดเดียวกัน เดินในท่อร้อยสายไฟเหมือนกัน แต่ถ้าจำนวนสายไฟในท่อนั้นแตกต่างกันก็จะรับไฟฟ้าสูงสุดได้ไม่เท่ากัน เช่นสายขนาดพื้นที่หน้าตัด 2.5 mm2 แกนเดียว เดินในท่อร้อยสายไฟที่มีสายแบบเดียวกันรวมทั้งหมด 2 เส้น จะรับกระแสได้ 21 แอมแปร์ แต่ถ้ามี 3 เส้นเมื่อใด กระแสสูงสุดที่รับได้จะลดลงเหลือ 18 แอมแปร์ (เพราะมีแหล่งผลิตความร้อนในท่อ (ก็คือตัวสายไฟนั่นแหละ) เพิ่มขึ้น) สายไฟที่พันเป็นม้วนทับกันอยู่ โดยเฉพาะอย่างยิ่งสายที่อยู่ข้างในจะไม่สามารถระบายความร้อนออกได้ และถ้าระบายความร้อนออกไม่ทันเกิดความร้อนสะสม ฉนวนหุ้มสายก็จะร้อนจัดเกิดการหลอมเหลวหรือลุกติดไฟได้ดังตัวอย่างที่แสดงในรูปที่ ๔ ข้างล่าง และเมื่อถึงฉนวนหลอมจนถึงจุดที่ทำให้ตัวนำสัมผัสกันเมื่อใด ก็จะเกิดไฟฟ้าลัดวงจรจนเกิดไฟลุกไหม้ได้

รูปที่ ๔ ตัวอย่างม้วนปลั๊กพ่วงแบบเก่าที่ใช้สายอ่อนแบบที่ใช้กับปลั๊กเครื่องไฟฟ้า พอเสียบเครื่องใช้ไฟฟ้าหลายตัวที่ทำให้ดึงกระแสสูง และไม่มีการดึงสายออกจากม้วนออกมาให้หมด ความร้อนที่สะสมสามารถทำให้สายไฟที่ขดอยู่ในม้วนนั้นไหม้ได้ คือถ้าดึงออกมาให้หมดก็จะไม่มีปัญหาอะไร

ที่ติดใจคือคำตอบในรูปที่ ๑ นั้น เพจนั้นบอกว่าคนตอบนั้นเป็นอาจารย์สอนวิศวไฟฟ้าที่คณะวิศวกรรมศาสตร์ในสถาบันการศึกษาแห่งหนึ่ง (ส่วนจะจริงหรือไม่ก็ไม่รู้เหมือนกัน)

วันพุธที่ 25 ธันวาคม พ.ศ. 2567

ถังปฏิกรณ์ผลิต phenol formaldehyde resin ระเบิดจากปฏิกิริยา runaway MO Memoir : Wednesday 25 December 2567

ความแตกต่างข้อหนึ่งระหว่างวิศวกรเคมีกับนักเคมีคือ อะไรที่นักเคมีดูแล้วไม่เห็นมีปัญหาอะไรกับการทำปฏิกิริยาในห้องปฏิบัติการ สามารถกลายเป็นเรื่องใหญ่ได้สำหรับวิศวกรเคมีเมื่อต้องขยายขนาดการทำปฏิกิริยา ซึ่งส่งผลให้ต้องปรับเปลี่ยนขั้นตอนปฏิบัติในการทำปฏิกิริยา อย่างเช่นการสังเคราะห์ฟีนอลฟอร์มัลดีไฮด์เรซิน

ฟีนอล (Phenol - C6H5-OH) และฟอร์มัลดีไฮด์ (Fromaldehdye HC(O)H) สามารถทำปฏิกิริยาควบแน่นเข้าด้วยกันเป็นพอลิเมอร์ที่เรียกว่า Bakelite (หรือ Phenol-Formaldehyde resin) ซึ่งจัดเป็นพลาสติกสังเคราะห์ตัวแรก ปฏิกิริยาจะเกิดได้ดีเมื่อมีกรดแก่ (H+) หรือเบสแก่ (OH-) เป็นตัวเร่งปฏิกิริยา และมีการให้ความร้อนช่วยเร่งอัตราการเกิดปฏิกิริยา แต่ผลิตภัณฑ์ที่ได้จะมีคุณสมบัติแตกต่างกันอยู่ ถ้าใช้กรดจะได้ผลิตภัณฑ์ชื่อว่า Novolak แต่ถ้าใช้เบสจะได้ผลิตภัณฑ์ชื่อ Resol (ต่างกันตรงมีหมู่ -CH2OH เกาะอยู่หรือไม่)

รูปที่ ๑ การใช้ตัวเร่งปฏิกิริยาที่เป็นกรดหรือเบสในการสังเคราะห์ phenol formaldehyde resin จะได้ผลิตภัณฑ์ที่มีความแตกต่างกันอยู่ การใช้เบสจะใช้สัดส่วนฟอร์มัลดีไฮด์มากกว่าฟีนอล ในขณะที่การใช้กรดจะใช้สัดส่วนฟอร์มัลดีไฮด์น้อยกว่าฟีนอล (รูปนี้นำมาจาก 'Handbook of Thermosetting Foams, Aerogel, and Hydrogels. From Fundamentals to Advanced Applications 2024, Chapter 16 - Phenolic resins: Preparation, structure, properties, and applications, หน้า ๓๘๓-๔๒๐)

หมู่ -OH ของฟีนอลมีฤทธิ์เป็นกรด เมื่อมีเบส OH- อยู่ ไอออน OH- นี้จะไปดึงโปรตอนออกจากหมู่ -OH ของฟีนอล ทำให้ฟีนอลกลายเป็น phenoxide ion (C6H5-O-) ที่มีอิเล็กตรอนหนาแน่นมากขึ้นไปอีก อะตอม C ที่มีความเป็นขั้วบวกของฟอร์มัลดีไฮด์จึงเข้ามาสร้างพันธะได้ง่ายขึ้น แต่ในกรณีที่ใช้กรด H+ เป็นตัวเร่งปฏิกิริยา ไอออน H+ เข้าไปเกาะกับอะตอม O ของหมู่คาร์บอนิลของฟอร์มัลดีไฮด์ ซึ่งจะไปเพิ่มการดึงอิเล็กตรอนออกจากอะตอม C ทำให้ความเป็นขั้วบวกของอะตอม C ของฟอร์มัลดีไฮด์เพิ่มสูงขึ้น สามารถเข้าไปดึงอิเล็กตรอนจากวงแหวนเบนซีนของฟีนอลได้ดีขึ้น

การสลายพันธะเดิมเป็นปฏิกิริยาดูดความร้อนในขณะที่การสร้างพันธะขึ้นมาใหม่เป็นปฏิกิริยาคายความร้อน ดังนั้นภาพรวมทั้งหมดของการเกิดปฏิกิริยา (ที่ประกอบด้วยการสลายพันธะเดิมและการสร้างพันธะใหม่) จะเป็นปฏิกิริยาดูดหรือคายความร้อนนั้นก็ขึ้นอยู่กับความขั้นตอนไหนมีการเปลี่ยนแปลงพลังงานมากกว่ากัน สำหรับปฏิกิริยาการเกิดพอลิเมอร์แล้ว ภาพรวมของปฏิกิริยาจะเป็นปฏิกิริยาคายความร้อน

ที่สำคัญคือปฏิกิริยาคายความร้อนนั้นสามารถเร่งตัวเองได้ถ้าระบายความร้อนออกไปไม่ทัน เพราะความร้อนที่ปฏิกิริยาคายออกมาจะไปเพิ่มอัตราการเกิดปฏิกิริยา ซึ่งจะไปเร่งอัตราการคายความร้อนให้สูงเพิ่มขึ้นไปอีก

รูปที่ ๒ คู่มือการทำการทดลองการสังเคราะห์ phenol-formaldehyde resin สำหรับปฏิบัติการเคมีของสถาบันการศึกษาแห่งหนึ่ง (ดาวน์โหลดมาจากอินเทอร์เน็ต)

รูปที่ ๒ เป็นคู่มือการสังเคราะห์ฟีนอลฟอร์มัลดีไฮด์เรซินที่ใช้กรดเป็นตัวเร่งปฏิกิริยา สำหรับนิสิตระดับปริญญาตรีของมหาวิทยาลัยแห่งหนึ่งในต่างประเทศ (ที่ค้นดูพบหลายอัน แต่มีวิธีการทำการทดลองแบบเดียวกัน) โดยมีขั้นตอนดังนี้

1. เติมกรดอะซิติกบริสุทธิ์ (glacial acetic acid) 5 ml และสารละลายฟอร์มัลดีไฮด์เข้มข้น 40% (ในน้ำ) 2.5 ml ในบีกเกอร์ขนาด 100 ml จากนั้นเติมฟีนอล 2 g

ฟอร์มัลดีไฮด์บริสุทธิ์เป็นแก๊สที่อุณหภูมิห้อง ที่เราใช้กันนั้นจะเป็นสารละลายในน้ำ ส่วนฟีนอลนั้นเป็นของแข็งที่อุณหภูมิห้อง แต่ถ้าอุ่นให้ร้อนสักนิดก็จะกลายเป็นของเหลว ส่วนกรดอะซิติกนั้นทำหน้าที่เป็นตัวทำละลาย

2. หุ้มห่อบีกเกอร์ด้วยผ้าเปียก หรือวางลงในบีกเกอร์ขนาด 250 ml ที่มีน้ำปริมาณเล็กน้อยอยู่ภายใน

เหตุผลคือถ้ามีน้ำมากไป บีกเกอร์ 100 ml มันจะลอยน้ำ น้ำและผ้าเปียกทำหน้าที่เป็นตัวรับความร้อนของปฏิกิริยา

3. เติมกรดไฮโดรคลอริก (HCl) เข้มข้นทีละหยด พร้อมทั้งใช้แท่งแก้วปั่นกวนอย่างรุนแรงจะเกิดสารที่มีลักษณะคล้ายยางสีชมพู

กรดไฮโดรคลอริกที่เป็นกรดแก่นี้ทำหน้าที่เป็นตัวเร่งปฏิกิริยา การปั่นกวนก็เพื่อทำให้กรดที่หยดลงไปนั้นกระจายไปทั่วถึงทั้งบีกเกอร์ สารตั้งต้นที่อยู่นอกบริเวณที่หยดกรดลงไปจะได้สามารถเกิดปฏิกิริยาได้ ในคู่มือต่าง ๆ ที่สืบค้นได้นั้นไม่ได้ให้รายละเอียดว่าให้หยดกรดลงไปเท่าใด

4. ล้างสารสีชมพูที่ได้นั้นหลายครั้ง เพื่อกำจัดความเป็นกรดให้หมดไป

คู่มือไม่ได้บอกว่าใช้ของเหลวอะไรล้าง แต่ดูแล้วน่าจะเป็นน้ำกลั่น

5. นำผลิตภัณฑ์ที่ได้ไปกรองและชั่งน้ำหนัก แล้วคำนวณหาผลได้ (น้ำหนักผลิตภัณฑ์ที่ได้ต่อน้ำหน้กสารตั้งต้นที่ใช้)

วิธีการทำปฏิกิริยาข้างต้นเหมาะสำหรับการเตรียมในปริมาณน้อย ๆ เพื่อการเรียนการสอนในห้องปฏิบัติการ แต่ไม่เหมาะสำหรับการเตรียมในปริมาณมากตรงประเด็นที่ว่า "ทำการผสมสารตั้งต้นทั้งหมดเข้ากันก่อน แล้วจึงค่อยเติมตัวเร่งปฏิกิริยาเพื่อให้ปฏิกิริยาเกิด"

ปฏิกิริยาคายความร้อนระหว่างสารตั้งต้นสองตัวที่มีการใช้ตัวเร่งปฏิกิริยาทำให้ปฏิกิริยาเกิดนั้น สิ่งสำคัญคือต้องสามารถควบคุมอุณหภูมิของระบบได้ กล่าวอีกนัยหนึ่งคือต้องสามารถระบายความร้อนที่เกิดขึ้นได้ทันเวลาเพื่อป้องกันไม่ให้ปฏิกิริยาเร่งตนเองจนอยู่นอกเหนือการควบคุมที่เรียกกันว่า runaway ซึ่งถ้าปฏิกิริยาเกิดการ runaway เมื่อใด ความร้อนที่คายออกมาจะทำให้สารในถังปฏิกรณ์ (ที่มักเป็นถังปิด) เดือดกลายเป็นไออย่างรวดเร็วหรือเกิดการสลายตัวตามมา ทำให้ความดันในถังปฏิกรณ์นั้นสูงจนถังระเบิดได้

ในกรณีที่ผสมสารตั้งต้นทั้งหมดเข้าด้วยกัน แล้วเติมตัวเร่งปฏิกิริยาลงไปเพื่อให้ปฏิกิริยาเกิดนั้น แม้ว่าจะหยุดการเติมตัวเร่งปฏิกิริยา ปฏิกิริยาก็จะไม่หยุดเพราะตัวเร่งปฏิกิริยาที่เติมไปก่อนหน้าจะยังทำหน้าที่เร่งปฏิกิริยาอยู่ ดังนั้นการควบคุมอัตราการเกิดปฏิกิริยาจะไปตกที่ความสามารถในการระบายความร้อนออกเพียงอย่างเดียว

รูปที่ ๓ ตัวอย่างถังปฏิกรณ์ที่ใช้ในการผลิต phenol formaldehyde resin ที่ใช้ในระดับอุตสาหกรรม (รูปนี้นำมาจากเอกสารเดียวกับรูปที่ ๑)

วิธีการที่ปลอดภัยกว่าที่ใช้กันในอุตสาหกรรมคือ ทำการเติมสารตั้งต้นเพียงตัวใดตัวหนึ่งเข้าไปในถังปฏิกรณ์ก่อน (ถ้ามีการใช้ตัวทำละลายก็มักจะเติมตัวทำละลายเข้าไปก่อน) ทำการเติมตัวเร่งปฏิกิริยา แล้วทำการผสมสารผสมในถังปฏิกรณ์ให้เป็นเนื้อเดียวกัน จากนั้นจึงค่อย ๆ เติมสารตั้งต้นตัวที่สองเข้าไปอย่างช้า ๆ เพื่อให้เกิดความร้อนทีละไม่มากเพื่อที่จะได้สามารถระบายออกได้ทัน ถ้าพบว่าอุณหภูมิมีแนวโน้มจะเพิ่มสูงเกินไป ก็จะหยุดการเติมสารตั้งต้นตัวที่สอง ปฏิกิริยาก็จะหยุด (เว้นแต่ว่าจะมีปฏิกิริยาข้างเคียงเกิด เช่นการสลายตัวของสารที่อยู่ในถัง ซึ่งถ้าเป็บแบบนี้ล่ะก็ แม้ว่าจะหยุดการเติมสารตั้งต้นตัวที่สอง อุณหภูมิในถังก็จะยังเพิ่มสูงขึ้นอยู่ดี)

รูปที่ ๓ เป็นตัวอย่างถังปฏิกรณ์ที่ใช้ในการสังเคราะห์ฟีนอลฟอร์มัลดีไฮด์เรซิน ในการสังเคราะห์แบบกะ (batch process) นั้น จะทำการเติมตัวทำละลายเข้าไปในถังก่อน จากนั้นเติมฟีนอลและตัวเร่งปฏิกิริยา เมื่อผสมสารในถังเป็นเนื้อเดียวกันแล้วก็จะค่อย ๆ เติมฟอร์มัลดีไฮด์ลงไปอย่างช้า ๆ พร้อมกับอุ่นสารในถังให้ร้อนขึ้นด้วยไอน้ำที่ไหลอยู่ใน jacket รอบนอกของถัง ช่วงนี้เป็นช่วงการเพิ่มอุณหภูมิเพื่อให้ปฏิกิริยาเริ่มเกิด และเมื่ออุณหภูมิสูงเพียงพอก็จะทำการเปลี่ยนจากไอน้ำเป็นน้ำหล่อเย็นเพื่อหยุดการเพิ่มอุณหภูมิ ความร้อนที่ปฏิกิริยาคายออกมานั้นส่วนหนึ่งระบายออกทางน้ำหล่อเย็นที่ไหลผ่านด้านนอก และอีกส่วนอาศัยการระเหยของตัวทำละลายที่จะไปควบแน่นเป็นของเหลวใหม่ที่เครื่องควบแน่น (conderser) และไหลกลับลงสู่ถังปฏิกรณ์เพื่อมารับความร้อนใหม่

พึงสังเกตว่าเส้นทางตัวทำละลายไหลกลับลงถังปฏิกรณ์ B-A นั้นมีส่วนของท่อที่ขดเป็นรูปตัว U อยู่ ท่อรูปตัว U ตรงตำแหน่งนี้มีไว้เพื่อกักเก็บตัวทำละลายทึ่ควบแน่นเพื่อป้องกันไม่ให้ไอระเหยในถังไหลเข้าสู่เครื่องควบแน่นทางเส้นทางนี้ได้ ดังนั้นไอระเหยของตัวทำละลายจะต้องไหลเข้าเครื่องควบแน่นทางด้านบน และเมื่อควบแน่นเป็นของเหลวแล้วจะไหลลงสู่ด้านล่างกลับเข้าสู่ถังปฏิกรณ์ทางเส้นทาง B-A ขนาดความสูงของท่อรูปตัว U นี้ต้องมากพอที่จะทำให้ความดันที่เกิดจากความสูงของของเหลวในท่อนั้นสูงกว่าความดันในถังปฏิกรณ์ เพราะถ้าความดันตรงนี้ไม่มากพอที่จะป้องกันการไหลของไอระเหยได้ ไอระเหยจะสามารถไหลเข้าสู่เครื่องควบแน่นทางด้านล่าง ทำให้ของเหลวที่ควบแน่นนั้นค้างอยู่ในเครื่องควบแน่น ประสิทธิภาพการทำงานของเครื่องควบแน่นจะลดต่ำลงมากจนไม่สามารถระบายความร้อนได้ถ้ามีของเหลวท่วมเต็ม (อ่านเรื่องการระเบิดที่เกิดจากของเหลวท่วมเครื่องควบแน่นได้ในบทความเรื่อง "VCE case 2 แก๊สรั่วจากปฏิกิริยา runaway 2549(2006)" ใน Memoir ฉบับวันอาทิตย์ที่ ๖ มกราคม พ.ศ. ๒๕๖๒)

เรื่องที่นำมาเล่าในวันนี้นำมาจากบทความเรื่อง "How to Prevent Runaway Reaction. Case Study: Phenol-Fromaldehyde Hazards" จากเอกสาร Chemicla Safety Case Study เผยแพร่ในเดือนสิงหาคม ค.ศ. ๑๙๙๙ (พ.ศ. ๒๕๔๒) จัดทำโดย United States Environmental Protection Agency (EPA) เป็นการระเบิดของโรงงานที่มลรัฐ Ohio ประเทศสหรัฐอเมริกาเมื่อวันที่ ๑๐ กันยายน ค.ศ. ๑๙๙๗ (พ.ศ. ๒๕๔๐) เมื่อเวลาประมาณ ๑๐.๔๒ น

การระเบิดเกิดที่ถังปฏิกรณ์ขนาด 8000 แกลลอน การสอบสวนพบว่าสาเหตุเกิดจากการที่โอเปอร์เรเตอร์ไม่ได้ปฏิบัติตามขั้นตอนการทำงานปรกติ โดยโอเปอร์เรเตอร์ได้ทำการเติมสารตั้งต้นทั้งหมดและตัวเร่งปฏิกิริยาเข้าไปในถังปฏิกรณ์ก่อน จากนั้นจึงให้ความร้อนด้วยไอน้ำ ทำให้เมื่อปฏิกิริยาเกิดขึ้นแล้วนั้น ปริมาณความร้อนที่คายออกมาสูงเกินกว่าความสามารถที่ระบบจะระบายออกไปได้ ความดันในถังเพิ่มสูงขึ้นอย่างรวดเร็วเกินกว่าความสามารถของระบบระบายความดันจะระบายได้ทันเวลา และเมื่อถังไม่สามารถรับความดันได้จึงเกิดการระเบิด ชิ้นส่วนฝาด้านบนของถังนั้นปลิวไปไกลกว่า 400 ฟุต (ก็ประมาณ 120 เมตร หรือข้ามสนามฟุตบอลตามแนวยาวได้)

เรื่องนี้ก็น่าจะจัดเป็นตัวอย่างได้ว่า งานของวิศวกรเคมีที่ต้องออกแบบขั้นตอนการทำงานสำหรับระบบขนาดใหญ่นั้นแตกต่างจากการออกแบบขั้นตอนการทำงานที่ใช้กันในระดับห้องปฏิบัติการอย่างไร