หมายเหตุ : เนื้อหาในบทความชุดนี้อิงจากมาตราฐาน API 2000 7th Edition, March 2014. Reaffirmed, April 2020 โดยมีวัตถุประสงค์เพื่อเป็นพื้นฐานในการทำความเข้าใจ ดังนั้นถ้าจะนำไปใช้งานจริงควรต้องตรวจสอบกับมาตรฐานฉบับล่าสุดที่ใช้ในช่วงเวลานั้นก่อน
วันนี้เป็นส่วนของภาคผนวก B หรือ Annex B (รูปที่ ๑) ซึ่งเป็นการให้ข้อมูลเกณฑ์ที่ใช้ในการคำนวณความสามารถในการระบายความดันในสภาวะฉุกเฉินที่แสดงไว้ใน Table 7 และ Table 8 (ตอนที่ ๙ วันอาทิตย์ที่ ๒๒ ตุลาคม พ.ศ. ๒๕๖๖)
ประโยคแรกของย่อหน้าแรกกล่าวถึงที่มาที่ไปของค่าต่าง ๆ โดยกล่าวว่าความสามารถในการระบายความดันในสภาวะฉุกเฉินที่ต้องมีที่กล่าวไว้ในมาตรฐาน API 2000 ฉบับเผยแพร่ครั้งแรก (ปีค.ศ. ๒๐๐๐) อิงจากข้อสมมุติที่ว่าถังบรรจุนั้นได้รับความร้อนจากไฟครอก (ก็ต้องเป็นทางด้านนอก) ที่อัตราเฉลี่ย 18,900 W/m2 (หรือในหน่วยอังกฤษคือ 6,000 ฺBtu/h-ft2) ของพื้นที่ผิวที่เปียกของเหลว (wetted surface คือพื้นที่ผิวที่อยู่ต่ำกว่าระดับของเหลว)
รูปที่ ๑ เริ่มภาคผนวก B
ตรงนี้ขอขยายความเพิ่มนิดนึง คือถ้ามีเชื้อเพลิงเหลวท่วมนองเป็นแอ่ง และเชื้อเพลิงเหลวนั้นติดไฟ ทำให้เกิดสิ่งที่เรียกว่า "pool fire" ความสูงของเปลวไฟจะเพิ่มตามขนาดของแอ่งของเหลว ในกรณีของถังเก็บ ขนาดที่ใหญ่ที่สุดของแอ่งของเหลวก็ควรเป็นขนาดของ tank bund (หรือ tank dike) ที่ล้อมรอบถังนั้นเอาไว้ สำหรับพื้นผิวโลหะที่โดนเปลวไฟโดยตรง ถ้าอีกด้านของผิวโลหะนั้นมีของเหลวอยู่ (คืออยู่ต่ำกว่าระดับของเหลว) ผิวโลหะจะได้รับการป้องกันความเสียหายจากความร้อนด้วยการเดือดกลายเป็นไอของของเหลว แต่การเดือดนี้จะเป็นการผลิตไอที่ทำให้ความดันในถังเพิ่มสูงขึ้น ผิวโลหะส่วนที่อยู่เหนือระดับของเหลวถ้าโดนเปลวไฟลน ผิวโลหะจะร้อนจัดจนสูญเสียความแข็งแรงได้ แต่ความดันที่เพิ่มขึ้นจากการขยายตัวของไอจะน้อยกว่าที่เกิดจากการเดือดของของเหลว
ประโยคถัดมากล่าวว่าความสามารถในการระบายความดันในสภาวะฉุกเฉิน (ที่ให้ไว้ในรูปของขนาดเส้นผ่านศูนย์กลางโดยประมาณของช่องเปิดรูปร่างวงกลมอิสระ (ไม่มีอะไรปิดคลุม) คำนวณจากผลการวิเคราะห์อย่างละเอียดของข้อมูลการกลั่นของ straight run gasoline ที่ได้จากการกลั่นน้ำมันดิบ U.S. Midcontinent โดยใช้สมการออริฟิคที่ใช้กันทั่วไป โดยใช้ค่าสัมประสิทธิ์ออริฟิค (orifice coefficient Cd หรือ coefficient of discharge) เท่ากับ 0.7 และค่าความถ่วงจำเพาะของไอเท่ากับ 2.5
straight run คือผลิตภัณฑ์ที่ได้ออกมาจากการกลั่นและยังไม่ได้นำไปปรับปรุงคุณภาพใด ๆ straight run gasoline ก็คือน้ำมันเบนซินที่ได้จากหอกลั่นบรรยากาศโดยที่ยังไม่นำไปปรับปรุงคุณสมบัติใด ๆ ซึ่งโดยปรกติน้ำมันนี้ก็จะมีเลขออกเทนที่ต่ำ ไฮโดรคาร์บอนตัวที่มีจุดเดือดต่ำกว่าน้ำมันเบนซินก็จะเป็นแก๊สที่อุณหภูมิห้อง ส่วนไฮโดรคาร์บอนตัวที่มีจุดเดือดสูงกว่าน้ำมันเบนซินก็จะกลายเป็นไอได้น้อยกว่าเมื่อได้รับความร้อนเท่ากัน การกำหนดว่าไฮโดรคาร์บอนตัวไหนเป็นน้ำมันเบนซินนั้นอาศัยช่วงอุณหภูมิจุดเดือด ที่อุณหภูมิเดียวกัน น้ำมันที่มีช่วงอุณหภูมิจุดเดือดเท่ากัน ก็ไม่จำเป็นต้องมีความดันไอเดียวกัน ตรงนี้ต้องไปดูที่กราฟการกลั่น (distillation curve) ที่เป็นตัวบอกว่าน้ำมันนั้นมีองค์ประกอบที่มีจุดเดือดต่ำและจุดเดือดสูงในสัดส่วนเท่าใด (อ่านเพิ่มเติมได้จากบทความใน blog เรื่อง "กราฟอุณหภูมิการกลั่นของน้ำมันเบนซิน(Gasolinedistillation curve) MO Memoir : Thursday 13 December 2555")
รูปที่ ๒ ค่า orifice coefficient (Cd หรือ coefficient of discharge) ของรูที่มีรูปร่างขอบด้านขาเข้าแบบต่าง ๆ จากซ้าย (a) ขอบมุมแหลม, (b) ขอบเหลี่ยมบาง, (c) ของเหลี่ยมหนา และ (d) ขอบมน (จาก https://www.numeric-gmbh.ch/posts/discharge-coefficients-in-aircraft-decompression-simulations.html) Cc คือ coefficient of contraction หรืออัตราส่วนระหว่างพื้นที่หน้าตัดลำของไหลที่พุ่งออกมาต่อพื้นที่หน้าตัดช่องเปิด, Cv คือ coefficient of velocity หรืออัตราส่วนระหว่างลำของไหลที่ฉีดพุ่งออกมาในความเป็นจริงต่อความเร็วในทางทฤษฎี
เป็นเรื่องปรกติที่น้ำมันดิบจากแต่ละแหล่งจะให้น้ำมันที่มีองค์ประกอบแตกต่างกันไป และน้ำมันเบนซินที่ผ่านการปรับปรุงคุณภาพก่อนส่งขายไปเติมรถก็จะมีคุณสมบัติที่แตกต่างไปจากที่ได้จากการกลั่นน้ำมันดิบ (เช่นน้ำมันเบนซินที่เราใช้กันนั้นจะมีไฮโดรคาร์บอนที่เป็นสารประกอบอะโรมาติกเป็นองค์ประกอบอยู่ในปริมาณมาก (ประมาณ 30%) ในขณะที่น้ำมันstraight run gasoline นั้นจะมีปริมาณสารประกอบอะโรมาติกที่ต่ำกว่ามาก
ส่วนค่าสัมประสิทธิออริฟิคเป็นตัวบอกว่าออริฟิคนั้นยอมให้ของไหลไหลผ่านได้ง่ายหรือยาก จากรูปที่ ๒ จะเห็นว่าขนาดลำของไหลที่ไหลผ่านช่องเปิดเมื่อเทียบกับขนาดของช่องเปิดนั้นขึ้นอยู่กับรูปร่างและความหนาของช่องเปิด ช่องเปิดที่เป็นผนังหนา (c) และ/หรือมีความโค้งมนที่ทางเข้า (d) จะให้ค่า Cd เป็น 1 หรือขนาดลำของไหลที่ฉีดพุ่งออกมีขนาดเท่ากับขนาดช่องเปิด ช่องเปิดที่เป็นขอบคม (a) หรือผนังบาง (b) จะมีค่า Cd น้อยกว่า 1 แสดงว่าพื้นที่ที่มีความสามารถในการระบายจริงนั้นมีขนาดเล็กกว่าขนาดช่องเปิด
ประโยคถัดมากล่าวว่าความสามารถในการระบายความดันในสภาวะฉุกเฉินสูงสุดที่ 17,400 m3/h (648,000 ft3/h) เป็นค่าความสามารถในการระบายที่ต้องมีสูงสุดโดยไม่ขึ้นกับขนาดของถังเก็บ ค่าความสามารถในการระบายที่ต้องมีสูงสุดนี้ได้มาจากความจริงที่ว่าถังที่มีขนาดความจุใหญ่กว่า 2,780 m3 (17,500 bbl) เมื่อได้รับความร้อนจะต้องใช้เวลาที่นานกว่าที่ของเหลวในถังจะมีอุณหภูมิสูงจนทำให้ของเหลวนั้นเดือดกลายเป็นไออย่างรวดเร็ว ซึ่งเป็นกรณีที่ไม่น่าจะเกิดขึ้น (สำหรับถังเก็บขนาดใหญ่) และแม้ว่ามันจะเกิดขึ้นได้ แต่ก็กินเวลาที่นานที่เพียงพอที่จะทำการใด ๆ เพื่อป้องกันชีวิตและทรัพย์สิน
สำหรับถังเก็บขนาดใหญ่ การเพิ่มขนาดความจุของถังจะใช้การเพิ่มขนาดเส้นผ่านศูนย์กลางถัง ขนาดเส้นผ่านศูนย์กลางที่ใหญ่ขึ้นจะทำให้อัตราส่วนพื้นที่ผิว (ที่เป็นบริเวณรับความร้อนจากเปลวไฟ) ต่อปริมาตรนั้นลดลง การเพิ่มอุณหภูมิของของเหลวในถังก็จะช้าลง
ย่อหน้าที่สองกล่าวว่าเกณฑ์พื้นฐานที่ใช้ในการกำหนดความสามารถในการระบายความดันในสภาวะฉุกเฉินนี้ได้รับการยอมรับโดย National Fire Protection Association (NFPA) และถูกใช้อย่างประสบความสำเร็จมาเป็นเวลานานหลายปี จะมีข้อยกเว้นบ้างสำหรับถังที่มีขนาดความจุเล็กกว่าปรกติ (อัตราส่วนพื้นที่ผิวต่อหน่วยปริมาตรสูง ทำให้ของเหลวเดือดได้เร็ว) แต่ก็ไม่มีบันทึกกรณีที่ถังพังเนื่องจากความดันสูงเกินเพราะความสามารถในการระบายความดันในสภาวะฉุกเฉินไม่เพียงพอ กับถังที่ใช้เกณฑ์การระบายความดันที่ให้ไว้ในที่นี้
NFPA เป็นองค์กรไม่แสวงผลกำไรที่มีบทบาทสำคัญในการลดการสูญเสียจากอัคคีภัย และภัยอื่น ๆ ที่เกี่ยวข้อง และได้มีการกำหนดมาตรฐานหลายเรื่องที่เกี่ยวข้องกับการป้องกันอัคคีภัยและลดการสูญเสียโดยเป็นมาตรฐานที่เป็นที่ยอมรับกันทั่วโลก ส่วนวิธีการหาความสามารถในการระบายความดันในสภาวะฉุกเฉินนั้นไม่ได้มีหลังจากเกิด API 2000 แต่มีมาก่อนแล้วและเป็นที่ยอมรับกันจนมีการนำมาใส่ไว้ใน API 2000
ย่อหน้าที่สามกล่าวว่า อย่างไรก็ตามการพังของถังที่ทำให้เกิดหายนะก็เคยมีการเกิดขึ้นจริง แต่กับถังที่ความสามารถในการระบายความดันในสภาวะฉุกเฉินไม่เป็นไปตามเกณฑ์ที่ให้ไว้ในนี้ การพังของถังเหล่านี้มุ่งเน้นไปที่ความสามารถในการระบายความดันในสภาวะฉุกเฉิน การทดลองขนาดเล็กกับเหตุการณ์เพลิงไหม้แสดงให้เห็นว่าอัตราความร้อนไหลผ่านพื้นผิวเข้าถังที่สูงกว่า 18,900 W/m2 (6,000 ฺBtu/h-ft2) เกิดขึ้นได้ภายใต้สภาวะอุดมคติ อย่างไรก็ตามไม่มีข้อมูลสำหรับการทดลองขนาดใหญ่ ในปีค.ศ. ๑๙๖๑ (พ.ศ. ๒๕๐๔) ในระหว่างการสาธิตที่เมือง Tulsa มลรัฐ Oklahoma ได้ใช้ถังแนวนอนที่มีขนาดเส้นผ่านศูนย์กลาง 2.44 m ยาว 7.18 m (หรือ 8 ft x 26 ft 10 in) ที่ได้รับการติดตั้งอุปกรณ์ระบายความดันในสภาวะฉุกเฉินที่ได้รับการกำหนดขนาดเพื่อจำกัดความดันเกจภายในถังให้อยู่ที่ประมาณ 0.75 kPa (หรือ 3 in. H2O) การวัดแสดงให้เห็นว่าภายใต้สภาวะที่โดนไฟครอกนั้นความดันเกจในถังเพิ่มสูงถึงประมาณ 11 kPa (44 in. H2O) โดยอิงจากการทดลองเหล่านี้ จึงได้มีการยอมรับกันว่าควรทำการพิจารณาความสามารถในการระบายความดันในสภาวะฉุกเฉินกันใหม่ และผลจากการศึกษานี้ จึงได้เกิดเกณฑ์การพิจารณาปริมาณความร้อนที่ไหลเข้าถังนี้ขึ้นมา
ถังเก็บของเหลวขนาดใหญ่ส่วนลำตัวจะมีรูปทรงเป็นถังทรงกระบอกแนวตั้ง แต่ถ้าเป็นขนาดเล็กส่วนลำตัวก็อาจมีรูปทรงเป็นทรงกระบอกแนวนอน ถังแบบหลังนี้ถ้าติดตั้งบนพื้นดินจะไม่ติดตั้งให้ลำตัวถังวางบนพื้นโดยตรง แต่จะมีขายกให้ลอยสูงขึ้นมา ดังนั้นเวลาที่โดนไฟครอกก็จะมีไฟครอกจากข้างใต้ถังได้ (ต่างจากถังเก็บขนาดใหญ่ที่วางในแนวดิ่ง ที่เปลวไฟจะครอกได้เฉพาะผิวด้านข้าง)
สำหรับตอนนี้คงจบแค่นี้ก่อน
ไม่มีความคิดเห็น:
แสดงความคิดเห็น