วันพฤหัสบดีที่ 7 พฤศจิกายน พ.ศ. 2567

ปัญหาการใช้ไฮโดรเจนเป็นเชื้อเพลิงสำหรับรถยนต์ MO Memoir : Thursday 7 November 2567

เมื่อต้นสัปดาห์ที่ผ่านมามีข่าวว่าประเทศมาเลเซียจะยกเลิกการจำหน่ายแก๊สธรรมชาติอัดความดัน (compressed natural gas - CNG) สำหรับรถยนต์ และยกเลิกการจดทะเบียนรถใช้แก๊สธรรมชาติอัดความดันเป็นเชื้อเพลิง สาเหตุหลักก็คืออายุการใช้งานของถังแก๊สที่ไม่มีการเปลี่ยนแปลงเมื่อถึงเวลาที่เหมาะสม จะว่าไปจากข่าวนี้ก็ทำให้เพิ่งรู้ว่านอกจากไทยแล้วก็ยังมีมาเลยเซียอีกที่ ที่เรียกแก๊สธรรมชาติอัดความดันว่า NGV ไม่ได้เรียกว่า CNG เหมือนทือื่นที่เรียกกันมานาน (รูปที่ ๑)

ถ้าสงสัยว่าหัวข้อบทความวันนี้ขึ้นเรื่องเกี่ยวกับแก๊สไฮโดรเจน แล้วมันเกี่ยวอะไรกับแก๊สธรรมชาติอัดความดัน ก็เพราะว่ามันต้องใช้ถังความดันสูง (และสูงกว่าด้วย) ในการเก็บเช่นเดียวกัน ดังนั้นเมื่อใช้งานไปมันก็จะมีปัญหาแบบเดียวกัน

รูปที่ ๑ ข่าวการยกเลิกการใช้รถยนต์ที่ใช้แก๊สธรรมชาติอัดความดัน (CNG) เป็นเชื้อเพลิงของประเทศมาเลเซีย

ความเสียหายของวัสดุจากการรับแรงดึงมีด้วยกัน 3 รูปแบบ รูปแบบแรกคือการเสียหายจากการรับแรงดึงสูงเกินกว่าที่วัสดุจะรับแรงได้ (tensile strength) การทดสอบความแข็งแรงเรื่องนี้ทำได้ไม่ยาก ก็ด้วยการนำเอาวัสดุนั้นมารับแรงดึงแล้วหาว่าแรงดึงสูงสุดที่รับได้ก่อนฉีกขาดนั้นมีค่าเท่าใด ถ้าเป็นถังความดันก็เอาถังนั้นมาอัดความดันแล้วก็ดูว่าต้องใช้ความดันสูงเท่าใดลำตัวถังจึงจะฉีกขาด

รูปแบบที่สองคือความเสียหายจาก creep หรือที่แปลเป็นไทยว่าความคืบ ความเสียหายแบบนี้เกิดจากการที่วัสดุนั้นรับแรงดึงที่ต่ำกว่าค่าแรงดึงสูงสุดที่รับได้ แต่ต้องรับต่อเนื่องเป็นเวลานาน โดยทั่วไปมักจะเกิดเมื่อต้องรับแรงที่ทำให้วัสดุนี้มีการเปลี่ยนแปลงขนาด ตัวอย่างเช่นถ้าเอาลวดเส้นหนึ่งมาดึงด้วยแรงดึงที่สูงพอ แรงดึงนั้นจะทำให้ลวดเส้นนั้นยืดออกโดยมีขนาดเส้นผ่านศูนย์กลางลดลง พอขนาดเส้นผ่านศูนย์กลางลดลง ความเค้นในเนื้อวัสดุบริเวณนั้นก็จะสูงขึ้น (เพราะความเค้นคืออัตราส่วนระหว่างแรงที่กระทำต่อพื้นที่รับแรง) ส่งผลให้เส้นลวดยืดตัวออกไปอีกอย่างช้า ๆ ขนาดเส้นผ่านศูนย์กลางก็จะลดลงไปอีก จนกระทั่งถึงจุดหนึ่งเส้นลวดนั้นก็จะขาด

รูปแบบที่สามคือความเสียหายจากความล้าหรือ fatigue เกิดเมื่อเนื้อวัสดุสั้นรับแรงที่ต่ำกว่าค่าแรงดึงสูงสุดที่รับได้ แต่แรงนั้นกระทำในรูปแบบที่เป็นวงรอบ (cycle) ต่อเนื่องกันเป็นเวลานาน ความเสียหายจากเหตุการณ์นี้ที่เป็นที่รู้จักกันมากที่สุดคือกรณีของเครื่องบินเจ็ตโดยสาร de Havilland Comet ที่ลำตัวเกิดการแตกออกขณะบินอยู่ในอากาศถึง ๓ ลำในปีค.ศ. ๑๙๕๔ (พ.ศ. ๒๔๙๗) อันเป็นเพราะจากความล้า เพราะในขณะที่เครื่องบินจอดอยู่บนพื้น ลำตัวเครื่องไม่ต้องรับแรงดัน แต่เมื่อบินสูงในอากาศ อากาศภายนอกเครื่องมีความดันต่ำกว่าภายในเครื่อง ลำตัวเครื่องจึงเสมือนกับต้องรับความดันเพิ่มขึ้นเมื่อเครื่องบินขึ้น และรับความดันน้อยลงเมื่อเครื่องบินลงจอด และการที่เครื่องบินขึ้นลงหลาย ๆ ครั้งก็เปรียบเสมือนการอัดความดัน/ระบายความดันซ้ำไปมาหลายครั้ง ทำให้รอยแตกเล็ก ๆ ในเนื้อโลหะค่อย ๆ ขยายตัว และเมื่อมารวมตัวกันกลายเป็นรอยแตกขนาดใหญ่ ก็เกิดความเสียหายขนาดใหญ่ขึ้นทันที

ถังแก๊สธรรมชาติ/แก๊สไฮโดรเจนที่นำมาใช้กับรถยนต์ ก็เป็นถังความดันที่มีรูปแบบการทำงานเช่นนี้ คือความดันในถังจะเพิ่มสูงขึ้นเมื่อทำการเติมแก๊ส และลดลงเมื่อดึงแก๊สไปใช้งาน (เพราะแก๊สจะกลายเป็นของเหลวเมื่อเพิ่มความดันได้ก็ต่อเมื่ออุณหภูมิของแก๊สนั้นต่ำกว่าค่าอุณหภูมิวิกฤต (critical temperature) แก๊สหุงต้มมีค่าอุณหภูมิวิกฤตสูงกว่าอุณหภูมิห้อง ในขณะที่มีเทนและไฮโดรเจนมีค่าอุณหภูมิวิกฤตที่ต่ำมาก)

ถังแก๊สหุงต้ม (LPG หรือ Liquified Petroleum Gas) ที่ใช้กับรถยนต์ไม่มีปัญหานี้ เพราะแก๊สหุงต้นมันอยู่ในรูปของเหลวภายใต้ความดัน ความดันในถังจึงคงที่ (แต่ก็ยังเปลี่ยนแปลงไปตามอุณหภูมิสภาพแวดล้อม) เวลาที่ดึงแก๊สออกไป ส่วนที่เป็นของเหลวก็จะระเหยมาชดเชย ความดันในถังจะไม่ลดจนกว่าของเหลวในถังจะไม่เหลือ เวลาที่เติมแก๊สเข้าไป ถ้าเป็นถังเปล่า พอความดันในถังเพิ่มสูงขึ้นถึงระดับหนึ่ง แก๊สที่เติมเข้าไปจะควบแน่นเป็นของเหลว ทำให้ความดันในถังไม่สูงขึ้น ดังนั้นถ้าการเติมแก๊สนั้นทำก่อนที่แก๊สในถังจะหมด ความดันในถังก็ถือได้ว่าคงที่ (ตรงนี้แตกต่างจากถังแก๊สหุงต้มที่ใข้กันตามบ้าน ที่จะใช้จนแก๊สหมดถังเลย แล้วค่อยเปลี่ยนถังแก๊ส)

รูปที่ ๒ ความหนาแน่นพลังงาน (พลังงานความร้อนต่อหน่วย "ปริมาตร" เชื้อเพลิง) ของเชื้อเพลิงชนิดต่าง ๆ

มีหลายปัจจัยที่ต้องพิจารณาในการเลือกชนิดเชื้อเพลิงที่จะนำมาใช้กับรถยนต์ รถยนต์นั้นมีพื้นที่สำหรับบรรทุกเชื้อเพลิงที่จำกัด (เพราะถูกกำหนดด้วยขนาดรถ พื้นที่ห้องโดยสาร และพื้นที่สำหรับบรรทุกสิ่งของ รูปที่ ๒ แสดงค่าความหนาแน่นพลังงานของเชื้อเพลิงแต่ละชนิด จะเห็นว่าเชื้อเพลิงไฮโดรคาร์บอนเหลวนั้นมีความหนาแน่นพลังงานที่สูง ถังเก็บก็มีน้ำหนักเบา เติมเชื้อเพลิงแต่ละครั้งก็วิ่งได้ระยะทางมากกว่าเชื้อเพลิงที่เป็นแก๊สที่ต้องใช้ถังความดัน (น้ำหนักมากกว่า) ในการเก็บเชื้อเพลิง ที่ความดัน 200 bar.g (200 เท่าของความดันบรรยากาศ) ไฮโดรเจนมีพลังงานเพียงแค่ประมาณ 25% ของแก๊สมีเทน ดังนั้นถ้าเก็บไฮโดรเจนที่ความดันและปริมาตรเดียวกันกับถัง CNG รถจะวิ่งได้ระยะทางที่น้อยกว่ามาก

แนวทางหนึ่งในการแก้ปัญหาคือเก็บไฮโดรเจนที่ความดันที่สูงขึ้น ซึ่งก็ได้มีการวิจัยและพัฒนาถังความดันไปจนถึงระดับ 700 bar.g จึงทำให้พลังงานต่อหน่วยปริมาตรของไฮโดรเจนเข้าใกล้เคียงกับของมีเทน แต่นั่นก็หมายความว่าน้ำหนักของถังบรรจุต้องเพิ่มมากขึ้นตามไปด้วย

จริงอยู่ที่ไฮโดรเจนมีค่าพลังงานต่อหน่วย "น้ำหนัก" สูงกว่าเชื้อเพลิงชนิดอื่น และหลายงานวิจัยมักจะอ้างถึงจุดนี้เวลาบอกว่าไฮโดรเจนนั้นดีกว่าเชื้อเพลิงชนิดอื่น แต่ในการใช้งานจริงนั้น "ปริมาตร" ถังเก็บเป็นตัวกำหนดปริมาณเชื้อเพลิงที่รถยนต์จะขนไปได้ และถ้าอิงที่น้ำหนักเชื้อเพลิงเท่ากัน ปริมาตรและน้ำหนักของถังบรรจุไฮโดรเจนจะมากกว่า ซึ่งส่งผลถึงค่ากำลังที่ได้จากเครื่องยนต์ต่อหน่วยน้ำหนักของ เครื่องยนต์ + ระบบเก็บและจ่ายเชื้อเพลิง

ด้วยระยะทางที่วิ่งได้ต่อการเติมเชื้อเพลิงแต่ละครั้งที่ต่ำ ทำให้ต้องมีการเติมเชื้อเพลิงบ่อยครั้ง ยิ่งเป็นรถที่ใช้งานต่อเนื่อง (เช่นรถยนต์รับจ้างหรือเดินทางไกลเป็นประจำ) ถังบรรจุก็ต้องรับความดันสูง-ต่ำสลับไปมาบ่อยครั้งกว่า โอกาสที่จะเกิดความเสียหายจากความล้าจึงสูงกว่า

การออกแบบถังเก็บ CNG ก็มีการพิจารณาประเด็นเรื่องความล้านี้ และก็ได้ออกแบบเผื่อไว้ ทำให้ถังพวกนี้มีอายุการใช้งาน กล่าวคือถึงแม้ว่าลำตัวถังเองนั้นไม่มีการผุกร่อน และถ้านำมาทดสอบความสามารถในการรับความดันก็ยังสามารถรับความดันได้อยู่ แต่ก็ต้องเปลี่ยนเป็นถังใหม่ และถังเก่าก็ไม่ควรนำมาใช้งานเพื่อเก็บแก๊สความดันสูงอีก แต่จากความเป็นจริงที่ถังเหล่านี้มีราคาสูง และการพิจารณาด้วยสายตาก็ยังเห็นว่าถังเหล่านี้ยังดูดีอยู่ ก็เลยมักไม่มีการเปลี่ยนถังกันเมื่อครบกำหนดอายุการใช้งาน

ขณะนี้มีการนำเสนอไฮโดรเจนมาแข่งกับแบตเตอรี่ ด้วยการโฆษณาว่าการเติมเชื้อเพลิงจนเต็มถังนั้นใช้เวลาน้อยกว่าการชาร์จแบตเตอรี่มาก (ซึ่งก็จริง) แต่มักไม่กล่าวถึงปริมาณเชื้อเพลิงที่สามารถเติมได้ และระยะทางที่รถสามารถวิ่งได้เมื่อเติมเชื้อเพลิงแต่ละครั้ง รูปที่ ๓ ข้างล่างนำมาจากหน้าเว็บของบริษัทหนึ่งที่ทำงานเกี่ยวกับการพัฒนาถังเก็บไฮโดรเจนสำหรับยานพาหนะ จะเห็นว่าสำหรับรถยนต์ขนาดเล็กที่ใช้ถังความดัน 350 bar จะบรรทุกเชื้อเพลิงได้ประมาณ 4-5 kg ในขณะที่รถขนาดใหญ่ที่ใช้ถังความดัน 700 bar จะบรรทุกได้ประมาณ 20-40 kg

รูปที่ ๓ ปริมาณเชื้อเพลิงไฮโดรเจนที่ยานพาหนะสามารถบรรทุกไปได้

เทียบต่อกิโลกรัม แม้ไฮโดรเจนมีพลังงานสูงกว่าน้ำมันเบนซินประมาณ 3 เท่า แต่รถยนต์สามารถบรรทุกน้ำมันได้มากกว่าไฮโดรเจนประมาณ 6 เท่า (น้ำมัน 40-45 ลิตรหนักประมาณ 30 kg) และถังเก็บน้ำมันยังมีน้ำหนักที่เบากว่าด้วย และใช้ไฮโดรเจนเป็นเชื้อเพลิงสำหรับรถยนต์ ก็ต้องมีการลงทุนระบบโครงสร้างพื้นฐานในการส่งไฮโดรเจนไปยังสถานีบริการต่าง ๆ ซึ่งจะมีความคุ้มหรือไม่ก็คงเรียนรู้ได้จากการขยายสถานนีบริการ CNG ในบ้านเรา ที่เป็นการขนส่งแก๊สความดันสูงไปยังสถานีบริการต่าง ๆ ว่ามีการเปลี่ยนแปลงอย่างไร และกรณีของไฮโดรเจนน่าจะมีปัญหามากกว่า เพราะใช้ความดันที่สูงกว่า

วันอังคารที่ 5 พฤศจิกายน พ.ศ. 2567

เพลิงไหม้จากการรั่วที่หน้าแปลน (๒) MO Memoir : Tuesday 5 November 2567

การตัดแยกระบบหรือการทำ Isolation เป็นขั้นตอนการทำงานที่สำคัญในการป้องกันไม่ให้ process fluid รั่วไหลเข้าสู่ vessel หรือ downstream process ที่ต้องการทำการซ่อมบำรุง และอุปกรณ์หลักที่ใช้ในการทำหน้าที่ดังกล่าวคือตัว spade (รูปที่ ๑)

รูปที่ ๑ การติดตั้ง (ซ้ายบน) Spade, (ขวาบน) Ring Spacer และ (ล่าง) Spectacle plate ระหว่างหน้าแปลน (รูปจาก https://www.haihaopiping.com/spectacle-flange-spades-and-ring-spacers.html)

หน้าตาของ spade เป็นดังรูปที่ ๑ ซ้ายบน คือเป็นแผ่นโลหะกลมมีด้ามโผล่ยื่นออกมา ขนาดของแผ่นกลมสามารถปิดท่อที่ต้องการตัดแยกระบบแต่สามารถสอดไว้ระหว่างน็อตของหน้าแปลนได้ ในกรณีของท่อที่มีขนาดเล็กและมีความยืดหยุ่นมากพอ อาจใช้การง้างท่อเพื่อสอดตัว spade เมื่อต้องการติดตั้ง แต่ในกรณีของท่อขนาดใหญ่หรือท่อที่ไม่มีความยืดหยุ่นมากพอ ก็ต้องเว้นที่ว่างระหว่างหน้าแปลนเอาไว้สำหรับใส่ตัว spade เมื่อต้องการติดตั้ง โดยขณะที่กระบวนการเดินเครื่องตามปรกติก็ต้องใส่ตัว ring spacer เข้าไปแทน (รูปที่ ๑ ขวาบน) เพื่อเติมเต็มช่องว่างระหว่างหน้าแปลน แล้วทำการบีบอัดด้วยน็อตของตัวหน้าแปลน (แต่ต้องไม่ลืมที่ต้องมีที่ว่างสำหรับใส่ปะเก็นระหว่างหน้าแปลนและตัว ring spacer ด้วย)

สิ่งหนึ่งที่อาจเป็นปัญหาในการทำงานคือจะรู้ได้อย่างไรว่าที่สอดระหว่างหน้าแปลนนั้นเป็น spade หรือ ring spacer การแก้ปัญหาก็ทำได้ด้วยการทำให้โครงสร้างส่วนที่โผล่ยื่นพ้นหน้าแปลนออกมานั้นมีรูปแบบไม่เหมือนกัน หรือก็เอา spade และ ring spacer มาเชื่อมติดกันเป็น spectacle plate แบบรูปที่ ๑ ล่างไปเลย ถ้าเห็นด้านที่เป็น spade โผล่ยื่นออกมาก็แสดงว่าด้านที่เป็น ring spacer นั้นถูกสอดอยู่ระหว่างหน้าแปลน และเช่นเดียวกันถ้าเห็นด้านที่เป็น ring spacer โผล่ยื่นออกมาก็แสดงว่าด้านที่เป็น spade นั้นถูกสอดอยู่ระหว่างหน้าแปลน

หมายเหตุ : การตัดแยกระบบหรือ isolation นั้นปรกติจะไม่ไว้วางใจการใช้วาล์วเพียงตัวเดียวในการปิดกั้น เพราะถือว่าวาล์วอาจมีความบกพร่องที่ทำให้ปิดได้ไม่สนิท ในกรณีที่ต้องมีการตัดแยกระบบบ่อยหรือมีความยากลำบากในการติดตั้ง spade ก็อาจใช้ระบบ double block and bleed valves คือใช้ block valve สองตัวต่ออนุกรมกัน และมีท่อ vent หรือ drain เพื่อระบาย process fluid ที่อาจรั่วไหลผ่าน block valve ทางด้าน process ให้ระบายไปยังจุดที่ปลอดภัย

เรื่องที่นำมาเล่าในวันนี้นำมาจากบทความเรื่อง "Leakage and fire from a flange with a special shape at the reactor outlet at a gas oil mediumpressure hydrocracker" ที่เผยแพร่ในเว็บ Failure Knowledge Database ของประเทศญี่ปุ่น (https://www.shippai.org/fkd/en/cfen/CC1300006.html) โดยเป็นเหตุการณ์ที่เกิดขึ้นที่ Ichihara, Chiba ประเทศญี่ปุ่นเมื่อวันที่ ๒๗ ตุลาคม ค.ศ. ๒๐๐๒ (พ.ศ. ๒๕๔๕) ที่ต้องปูเรื่อง spade และ ring spacer ก่อนก็เพื่อให้ผู้ที่ยังเรียนอยู่หรือไม่ได้ทำงานทางด้านนี้มองเห็นภาพได้ว่าอุปกรณ์ที่เกี่ยวข้องกับเหตุการณ์ดังกล่าวนี้ มันไปปรากฏอยู่ในระบบท่อด้วยเหตุผลใด

รูปที่ ๒ คำบรรยายเหตุการณ์ที่เกิด

หน่วยผลิตที่เกิดเหตุนั้นสร้างขึ้นในปีค.ศ. ๑๙๖๒ (พ.ศ. ๒๕๐๕) เพื่อใช้เป็นหน่วยกำจัดกำมะถันออกจากน้ำมันหนัก (desulphurization unit) ต่อมาในปีค.ศ. ๑๙๘๒ (พ.ศ. ๒๕๒๕) ถูกปรับเปลี่ยนมาทำหน้าที่เป็นทั้งหน่วยกำจัดกำมะถันและ "decomposition unit" สำหรับ heavy gas oil ก่อนที่จะเกิดเพลิงไหม้ในปีค.ศ. ๒๐๐๒

คำ "decomposition unit" ที่ใช้บทความหมายถึงหน่วย hydrocraker ที่เรียกกันในปัจจุบัน คือการกำจัดสารประกอบกำมะถันอินทรีย์ที่ปนอยู่ในน้ำมันจะใช้แก๊สไฮโดรเจนทำปฏิกิริยาโดยมีตัวเร่งปฏิกิริยาช่วยเพื่อดึงเอากำมะถันออกมาในรูปแก๊สไฮโดรเจนซัลไฟด์ (H2S) โดยปฏิกิริยาจะเกิดที่อุณหภูมิและความดันที่สูง และด้วยการที่โมเลกุลของน้ำมันหนักแม้ว่าจะมีขนาดใหญ่แต่ก็มีความไม่อิ่มตัวสูง (มีพันธะ C=C มาก) จึงแตกตัวออกเป็นโมเลกุลเล็กลงได้ยาก เพราะการที่โมเลกุลใหญ่แตกออกเป็นโมเลกุลเล็กลง จะได้ผลิตภัณฑ์ที่มีความไม่อิ่มตัวสูงมากขึ้น ดังนั้นถ้าสารตั้งต้นมีความไม่อิ่มตัวสูงอยู่แล้ว การจะทำให้แตกออกเป็นโมเลกุลเล็กลงจึงทำได้ยากขึ้นไปอีก ด้วยเหตุนี้จึงต้องทำลดความไม่อิ่มตัวของสารตั้งต้นลงก่อนด้วยการเติมไฮโดรเจนเข้าไปยังตำแหน่งพันธะที่ไม่อิ่มตัว ซึ่งปฏิกิริยานี้ก็เกิดที่อุณหภูมิและความดันที่สูงเช่นกัน

ก่อนเกิดเหตุนั้น ได้มีการลดอัตราการไหลของสารตั้งต้นและลดอุณหภูมิของระบบลงจาก 370ºC เหลือเป็น 340ºC และเมื่อเวลาประมาณ ๒๒.๓๐ น แก๊สความดันสูงและอุณหภูมิสูงได้รั่วไหลออกจากหน้าแปลนที่มี spacer ติดตั้งอยู่ ตำแหน่งหน้าแปลนนี้อยู่ทางด้านขาออกของ reactor ในช่วงแรกนั้นเปลวไฟที่เกิดขึ้นมีขนาดเล็ก แต่ด้วยความร้อนของเปลวไฟจึงทำให้ bolt ที่ยึดหน้าแปลนไว้เกิดการยืดตัวออก ทำให้แรงกดหน้าแปลนให้แนบสนิทนั้นลดลง การรั่วไหลจึงเกิดเพิ่มมากขึ้น ส่งผลให้ความเสียหายขยายเป็นวงที่กว้างขึ้น เพลิงสงบเมื่อเวลา ๕.๓๐ น ของวันถัดมา

หน่วยนี้มีการหยุดเดินเครื่องเพื่อซ่อมบำรุงครั้งสุดท้ายในปีค.ศ. ๒๐๐๑ (พ.ศ. ๒๕๔๔) หรือก่อนเกิดเหตุประมาณ ๑ ปี และเมื่อทำการถอด spacer ออกจากหน้าแปลนที่เกิดเหตุก็พบว่าระยะห่างระหว่างหน้าแปลนนั้นมีความแตกต่างถึง 8 mm แทนที่จะขนานกัน ทำให้เวลาที่ใส่ spacer กลับคืนเข้าไปแล้วขัน bolt คืนเดิมนั้น ความตึงของ bolt แต่ะละตัวจะไม่เท่ากัน (คือด้านที่ห่างมากกว่าจะมีความตึงมากกว่า เพราะต้องใช้แรงมากกว่าในการดึงให้หน้าแปลนเคลื่อนเข้าหากัน)

บทความกล่าวว่าสาเหตุที่ทำให้เกิดการรั่วไหลคาดว่าเป็นเพราะตัว spacer มีการหดตัวมากกว่าตัว bolt เมื่ออุณหภูมิของระบบลดต่ำลง คือถ้า bolt หดตัวด้วยขนาดเดียวกันหรือมากกว่าตัว spacer ตัว spacer ก็จะยังคงถูกบีบอัดเอาไว้ แต่พอ bolt หดตัวน้อยกว่า ก็เลยทำให้เกิดช่องว่างระหว่างหน้าผิวสัมผัส

ประเด็นที่น่าสนใจก็คือในเมื่อหน้าแปลนมันไม่ขนานกัน แล้วทำไมจึงฝืนขันน็อตเพื่อให้หน้าแปลนมันแนบติดกัน ตรงนี้ผู้เขียนบทความเล่าไว้ว่ สมัยที่เป็นวิศวกรจบใหม่เข้าทำงานนั้น ในกรณีที่พบว่าหน้าแปลนนั้นไม่ขนานกันอันเป็นผลจากความเครียด (strain) ของระบบท่อ ก็จะใช้รอกโซ่ดึงหน้าแปลนเข้าหากันแล้วทำการขันน็อตให้แน่น ซึ่งแสดงว่าวิธีการทำงานดังกล่าวยังมีการปฏิบัติอยู่จนกระทั่งวันที่เกิดเหตุการณ์ดังกล่าว

ตรงนี้ก็มีข้อควรพิจารณาคือ การใช้การดึงหน้าแปลนที่ไม่ขนานกันให้แนบเข้าหากันนั้นเป็นสิ่งที่ควรกระทำหรือไม่ เพราะตอนที่ประกอบท่อเมื่อสร้างโรงงานนั้นสามารถจัดให้ผิวหน้าแปลนขนานกันได้ แต่พอโรงงานมีการใช้งานก็จะทำให้ท่อมีการขยายตัว ซึ่งสามารถทำให้ท่อเกิดการเคลื่อนออกไปจากตำแหน่งเดิมเมื่อแรกสร้าง และไม่คืนกลับตำแหน่งเดิมแม้ว่าโรงงานจะหยุดการเดินเครื่อง ทำให้เมื่อถอดน็อตยึดหน้าแปลนออกหน้าแปลนจึงไม่ขนานกัน ดังนั้นการทำเช่นนี้จึงอาจเป็นสิ่งที่สามารถกระทำได้ถ้าความเบี่ยงเบนนั้นไม่มากเกินไป บทความไม่ได้กล่าวว่าท่อที่เกิดเหตุนั้นเป็นท่อขนาดกี่นิ้ว จึงไม่สามารถเทียบว่าระยะเบี่ยงเบน 8 mm ที่พบนั้นจัดว่ามากไปหรือไม่สำหรับขนาดเส้นผ่านศูนย์กลางของท่อที่เกิดเหตุ โดยความเห็นส่วนตัวคิดว่าประเด็นหน้าแปลนไม่ขนานนี้น่าจะเป็นตัวการหลักให้เกิดการรั่วไหลมากกว่าการหดตัวของ spacer

ในบทความต้นฉบับ มีความคิดเห็นหนึ่งของผู้เขียนที่ผู้อ่านควรต้องพิจารณาให้ดี คือผู้เขียนบทความกล่าวว่าการใส่ spacer ไว้ที่หน้าแปลนดังกล่าวก็เพื่อใช้ในการตัดแยก reactor ออกจากระบบเมื่อต้องทำการซ่อมบำรุง และน่าจะเป็นการดีกว่าถ้าหากใช้ "ท่อสั้น ๆ" แทนการใช้ spacer แม้ว่าจะต้องมีหน้าแปลนเพิ่มขึ้นอีกหนึ่งคู่ก็ตาม สำหรับผู้ที่นึกภาพตรงนี้ไม่ออกขอให้ดูรูปที่ ๓ ประกอบ

รูปที่ ๓ (ซ้าย) การใช้ ring spacer (สีเขียว) ใส่ระหว่างหน้าแปลนเพื่อให้มีที่ว่างสำหรับใส่ spade เมื่อต้องทำการแยก vessel ออกจาก process (ขวา) การใช่ท่อสั้น (สีส้ม) ที่จะถอดออกเมื่อต้องการแยก vessel ออกจาก process

คือในระหว่างการซ่อมบำรุงนั้นต้องมีการป้องกันไม่ process fluid รั่วไหลออกมายังด้านที่ทำการซ่อมบำรุง (เช่นตัว vessel) วิธีการที่ดีที่สุดคือไม่ให้มีการเชื่อมต่อทางกายภาพ (physical connection) ระหว่างกัน กล่าวคือถ้ามีชิ้นส่วนท่อสั้นเชื่อมระหว่างด้าน process กับด้าน vessel ก็ให้ถอดชิ้นส่วนท่อสั้นนั้นออก (ถอดตัวสีส้มในรูปที่ ๓) แต่ปลายท่อด้าน process ก็ต้องปิดด้วย blind flange ให้แน่นหนาสามารถกันการรั่วไหลได้ด้วย

การให้มีท่อสั้นที่สามารถถอดออกได้นั้นก็อาจทำไม่ได้ในกรณีที่พื้นที่มีจำกัด หรือในกรณีที่ท่อมีขนาดใหญ่ ก็จะทำให้ท่อสั้นที่ต้องถอดออกนั้นมีน้ำหนักมากตามไปด้วย การใช้ spade หรือ spectacle plate จะมึความสะดวกมากกว่า หรือในกรณีที่มีการปฏิบัติงานเป็นประจำ การใช้ double block and bleed valves ก็เป็นที่ยอมรับกัน เพราะรอยต่อที่ปิดสนิทไม่มีการรั่วซึมอยู่แล้ว พอไปถอดออกแล้วประกอบใหม่ ก็ต้องมาลุ้นกันใหม่ว่าประกอบใหม่แล้วจะมีการรั่วซึมอีกหรือไม่

การติดตั้ง orifice plate ที่ใช้วัดอัตราการไหลก็มีการติดตั้งแบบเดียวกับ ring spacer คือสอดไว้ระหว่างหน้าแปลน คือถ้าเอาแนวความคิดเดียวกันมาใช้ก็จะกลายเป็นว่าการติดตั้ง orifice plate อาจทำให้เกิดการรั่วไหลแบบนี้ได้ ดังนั้นควรเปลี่ยนไปใช้ venturi flow meter จะดีกว่า

อีกประเด็นคือ ตัวหน้าแปลนเองก็เป็นจุดที่สามารถเกิดการรั่วไหลได้อยู่แล้ว อันเป็นผลจากการคลายตัวของน็อตยึดหน้าแปลนด้วยหลากหลายสาเหตุ (เช่นที่ได้เล่าไปในตอนที่ ๑)