แสดงบทความที่มีป้ายกำกับ กรดไนตริก แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ กรดไนตริก แสดงบทความทั้งหมด

วันอาทิตย์ที่ 23 กุมภาพันธ์ พ.ศ. 2568

การผลิตกรดไนตริกความเข้มข้นสูง MO Memoir : Sunday 23 February 2568

เมื่อวันศุกร์ที่ผ่านมาได้มีโอกาสไปเยี่ยมชมโรงงานแห่งหนึ่ง โรงงานแห่งนี้ต้องใช้กรดไนตริก (Nitric acid - HNO3) เข้มข้นในการทำปฏิกิริยา (เข้มข้นกว่า 90%) แต่เมื่อทำปฏิกิริยาไปได้ระดับหนึ่งความเข้มข้นก็จะลดลง ทำให้ต้องมีการนำเอากรดไนตริกที่เจือจางนั้นมาทำให้เข้มข้นใหม่เพื่อนำกลับไปใช้ทำปฏิกิริยาใหม่

การผลิตในส่วนนี้ไม่มีโอกาสเข้าไปชม ทราบแต่ว่าใช้เทคโนโลยีของเยอรมัน ก็เลยลองค้นดูว่าเพื่อที่จะกลั่นให้ได้กรดไนตริกเข้มข้นสูงขึ้นนั้นต้องทำอย่างไร ก็ไปพบกับเว็บของบริษัท De Dietrich Process System ที่เห็นว่าให้รายละเอียดกระบวนการในระดับอุตสาหกรรมได้ดี ซึ่งก็ไม่รู้ว่าเป็นเทคโนโลยีเดียวกับที่ทางบริษัทที่ไปเยี่ยมชมใช้หรือเปล่า แต่เห็นคำบรรยายกระบวนการบนหน้าเว็บกับที่ได้รับฟังมานั้นมันคล้ายกัน ก็เลยขอเอามาบันทึกไว้หน่อย รูปที่ ๑ และ ๒ นำมาจาก https://www.dedietrich.com/en/solutions-and-products/mineral-acid-treatment/nitric-acid-treatment/high-concentration-nitric-acid

ที่ความดันบรรยากาศ กรดไนตริกบริสุทธิ์มีจุดเดือดที่ 83ºC ในขณะที่น้ำมีจุดเดือดที่ 100ºC แต่ถ้าเรานำเอาสารละลายกรดไนตริกเจือจางไปต้ม ไอที่ระเหยออกมานั้นจะมีน้ำมากกว่ากรดไนตริก ทำให้ของเหลวที่เหลือมีกรดไนตริกเข้มข้นมากขึ้น จนกระทั่งความเข้มข้นของกรดนั้นสูงถึง 68 wt% ความเข้มข้นของกรดในส่วนที่เป็นไอที่ระเหยออกมานั้นจะเท่ากับส่วนที่ค้างอยู่ในของเหลว ณ ความเข้มข้นนี้การเดือดของสารละลายจะมีพฤติกรรมเหมือนสารบริสุทธิ์ (คือองค์ประกอบที่ระเหยออกมาเหมือนกับที่ยังเป็นของเหลวอยู่) เป็นจุดที่เราเรียกว่าอะซีโอโทรป (azeotrope) (รูปที่ ๑ ซ้าย)

รูปที่ ๑ (ซ้าย) เฟสไดอะแกรมของระบบ HNO3-H2O (ชวา) เฟสไดอะแกรมของระบบ HNO3-H2SO4-H2O

กรดไนตริกเข้มข้นที่ขายกันทั่วไปก็ขายกันที่ความเข้มข้นนี้ การกลั่นเพื่อให้ได้กรดไนตริกความเข้มข้นสูงขึ้นไปอีกทำได้ด้วยการผสมกรดกำมะถัน (Sulphuric aicd - H2SO4) เข้าไป รูปที่ ๑ (ซ้าย) แสดงให้เห็นว่าถ้าผสมกรดกำมะถันเข้าไปถึงระดับ 50 wt% ความเป็นอะซีโอโทรปของสารละลายก็จะหายไป ทำให้สามารถกลั่นกรดไนตริกไปที่ระดับความเข้มข้นแตะ 100% ได้

รูปที่ ๒ (ซ้าย) หอทำให้กรดไนตริกเข้มข้น (ขวา) หอทำให้กรดไนตริกมีความใส

ปัญหาที่หนึ่งที่พบกันเป็นประจำในงานวิศวกรรมคือการเลือกวัสดุที่ต้องทนต่อการกัดกร่อนของสารเคมีหลายตัวในเวลาเดียวกันและต้องมีความแข็งแรงเชิงกลด้วย (เช่น ความสามารถในการรับน้ำหนัก, ความแข็งแรงในการรับแรงสั่นสะเทือน, การเปลี่ยนแปลงอุณหภูมิอย่างรวดเร็ว) โลหะผสมบางชนิดให้ทั้งความคนทนต่อการกัดกร่อนและความเข็งแรงเชิงกล (และแน่นอนว่าราคาที่สูงด้วย) แต่คำว่า "ทน" ต่อการกัดกร่อนของโลหะนั้นไม่ได้หมายความว่ามันจะไม่ถูกกัดกร่อนเลย แต่ยังหมายความถึงการที่มันถูกกัดกร่อนด้วยอัตราที่ต่ำและยอมรับได้ในช่วงอายุการใช้งานของมันด้วย และก็ต้องพึงระลึกว่าโลหะที่ถูกกัดกร่อนออกไปนั้นจะเข้าไปปนเปื้อนในของเหลวที่มันสัมผัส

แก้วเป็นวัสดุที่ไม่ทนต่อการสั่นสะเทือนและการเปลี่ยนแปลงอุณหภูมิอย่างรวดเร็ว แต่มันมีจุดเด่นคือทนต่อสารเคมี (จะยกเว้นก็พวกกรดกัดแก้วและเบสที่แรง) การนำแก้วมาใช้ในงานที่ต้องทนต่อการกัดกร่อนของสารเคมีนั้นมีทั้งการใช้ในรูปของแก้วทั้งชิ้น หรือชิ้นงานโลหะที่มีการเคลือบผิวด้านที่สัมผัสกับสารเคมีด้วยแก้ว (ที่เรียกว่า glass lining)

สารเคมีที่มีฤทธิ์กัดกร่อนสูงบางตัวถูกใช้ในการผลิตอาวุธเคมีและการสกัดเชื้อเพลิงนิวเคลียร์ และอุปกรณ์ที่ใช้กับสารเคมีตัวนั้นก็เป็นอุปกรณ์ชนิดเดียวกันกับที่ใช้กับสารเคมีตัวอื่นที่ไม่ได้เกี่ยวข้องกับการผลิตอาวุธเคมีและการสกัดเชื้อเพลิงนิวเคลียร์ ด้วยเหตุนี้จึงทำให้อุปกรณ์การผลิตสารเคมีที่เกี่ยวข้องกับสารที่มีฤทธิ์กัดกร่อนสูงจึงกลายเป็นสินค้าที่ใช้ได้สองทาง

หอกลั่น (รวมทั้งหอดูดซับ) ที่ทำจากแก้วถูกจัดให้เป็นสินค้าที่ใช้ได้สองทาง (Dual use item หรือ DUI) ในหมวด 2B350.e.1 (รูปที่ ๓) แต่การทำงานของหอกลั่นต้องควบคู่ไปกับเครื่องแลกเปลี่ยนความร้อนที่ทำหน้าที่จ่ายความร้อนให้ของเหลวเดือด และควบแน่นไอระเหยให้กลายเป็นของเหลว โดยเครื่องแลกเปลี่ยนความร้อนถูกจัดให้เป็นสินค้าที่ใช้ได้สองทางในหมวด 2B350.d (รูปที่ ๔)

รูปที่ ๓ หอกลั่นที่ทำจากแก้วจัดเป็นสินค้าที่ใช้ได้สองทางในหมวด 2B350.e.3

ถ้าดูชนิดวัสดุที่ใช้ทำเครื่องแลกเปลี่ยนความร้อนที่เป็นสินค้าควบคุมจะพบว่ามีชนิดวัสดุมากกว่ากรณีของหอกลั่นอยู่ ๒ ชนิดคือ Silicon carbide และ Titanium carbide นั่นก็เป็นเพราะว่าวัสดุสองชนิดนี้นำความร้อนได้ดี จึงเหมาะสำหรับนำมาใช้ทำท่อสำหรับเครื่องแลกเปลี่ยนความร้อนที่ใช้แลกเปลี่ยนความร้อนระหว่างของไหลที่ไหลอยู่ภายในและภายนอกท่อ

อีกวิธีการในการผลิตกรดไนตริกเข้มข้นเกิน 68 wt% คือการละลายแก๊ส NO2 เพิ่มลงไปในสารละลายกรดไนตริกที่เป็นสารละลายอะซีโอโทรป กระบวนการนี้เริ่มด้วยการออกซิไดซ์ NH3 ด้วยอากาศที่อุณหภูมิ 810-830ºC จะได้แก๊ส NO และน้ำดังสมการ

4NH3 + 5O2 -----> 4NO + H2O

จากนั้นทำการลดอุณหภูมิแก๊สร้อนนี้เพื่อให้น้ำควบแน่นออกมา แล้วผ่านแก๊ส NO ที่ได้ไปสัมผัสกับสารละลายกรดไนตริก NO จะถูกออกซิไดซ์ไปเป็น NO2 ดังสมการ

NO + 2HNO3 -----> 3NO2 + H2O

แก๊สที่ได้จะถูกอัดให้มีความดันเพิ่มถึง 10 bar ก่อนที่จะถูกส่งไปสัมผัสกับสารละลายกรดไนตริกที่เป็นสารละลายอะซีโอโทรปเพื่อเพิ่มความเช้มข้นของกรดไนตริกให้สูงเกินความเข้มข้นที่อะซีโอโทรป รายละเอียดเพิ่มเติมของกระบวนการหลังนี้อ่านได้จากเว็บ https://espindesa.es/en/

รูปที่ ๔ เครื่องแลกเปลี่ยนความร้อนจัดเป็นสินค้าที่ใช้ได้สองทางในหมวด 2B350.d

วันเสาร์ที่ 14 มกราคม พ.ศ. 2566

เมื่อผสมกรดไนตริก (HNO3) กับไอโซโพรพานอล (Isopropanol) MO Memoir : Saturday 14 January 2566

ในทางโลหะวิทยา การทำ "Surface etching" มีวัตถุประสงค์ด้วยกันหลากหลาย เช่นเวลาที่ต้องการส่องดู grains หรือ microstructure ของเนื้อเหล็กก็ต้องทำการกำจัดชั้นฟิล์มออกไซด์ที่ผิวบนออกไปก่อนด้วยการใช้สารเคมีที่เหมาะสมละลายชั้นฟิล์มออกไซด์ที่ผิวบนออกไป ชนิดของสารเคมีที่ใช้ขึ้นอยู่กับชนิดโลหะ สารเคมีตัวหนึ่งที่ใช้กันในการ etching ผิวเหล็กคือ "Nital" ที่เป็นสารผสมระหว่างกรดไนตริกเข้มข้น (Nitric acid HNO3) กับเอทานอล (Ethanol C2H5OH) หรือเมทานอล (Methanol CH3OH) โดยเอทานอลจะเป็นตัวที่นิยมใช้มากกว่าเพราะมีความเป็นพิษต่ำกว่า

แต่ห้ามผสมไอโซโพรพานอล (Isopropanol H3C-CH(OH)-CH3) กับกรดไนตริกเข้มข้น

หมู่ -OH สามารถทำปฏิกิริยา esterification กับกรดไนตริกกลายเป็นหมู่ -ONO2 (เรียกปฏิกิริยานี้ว่า Nitration) โดยผลิตภัณฑ์ที่ได้จะมีความไวไฟสูงขึ้นและอาจระเบิดได้ง่ายขึ้น

การเตรียม Nital นั้นต้องเตรียมด้วยความระมัดระวัง และไม่ควรเตรียมสารละลายที่มีความเข้มข้นของกรดไนตริกเข้มข้นสูงเกินกว่า 5 %wt วิธีการเตรียม Nital ข้างล่างคัดมาจากคู่มือปฏิบัติการของภาควิชาแห่งหนึ่ง โดยคัดมาเพียงบางส่วน เพื่อให้เห็นภาพเท่านั้น

1. เตรียมภาชนะใส่น้ำ โดยปริมาตรน้ำควรมากกว่าปริมาตรสารละลายที่เติมอย่างน้อย 2 เท่า และภาชนะดังกล่าวต้องมีที่ว่างเหลือพอสำหรับเติมสารละลายลง (จะใช้เมื่อจำเป็น)

2. ตวงเอทานอล (ความบริสุทธ์สูง) ปริมาตรที่ต้องการลงในบีกเกอร์ที่แห้งและสะอาด

3. ตวงกรดไนตริกเข้มข้น (67-70 %wt) ในปริมาตรที่ต้องการในกระบอกตวง (ที่เมื่อผสมกับเอทานอลแล้วความเข้มข้นกรดไม่ควรจะสูงเกินกว่า 5 %wt) ห้ามเทเอทานอลลงในกรด

4. ค่อย ๆ เทกรดไนตริกจากกระบอกตวง "อย่างช้ามาก" ลงในเอทานอล พร้อมทั้งทำการกวนอย่างสม่ำเสมอตลอดเวลา ถ้าเห็นสารละลายมีสีน้ำตาลหรือเกิดไอแก๊สสีน้ำตาล ให้ทำการหยุดการเติมกรดทันที ถ้าคิดว่าปลอดภัยพอก็ให้เทสารละลายที่เตรียมลงในภาชนะใส่น้ำที่เตรียมไว้ เพื่อลดความร้อนและอัตราการเกิดปฏิกิริยา แต่ถ้าพบว่าเกิดแก๊สอย่างรุนแรง ให้ถอยห่างออกมา

(หมายเหตุ : ความหนาแน่นของกรดไนตริกเข้มข้นอยู่ที่ประมาณ 1.4 g/ml ส่วนของเอทานอลอยู่ที่ประมาณ 0.79 g/ml ดังนั้นกรดไนตริก 5 %vol ในเอทานอล จะมีความเข้มข้นกรดไนตริกประมาณ 9 %wt)

รูปที่ ๑ เอกสารที่นำมาเป็นต้นเรื่องของบทความในวันนี้

เรื่องที่นำมาเล่าในวันนี้นำมาจากเอกสารทบทวนเหตุการณ์ที่เกิดในปีค.ศ. ๑๙๙๗ (พ.ศ. ๒๕๔๐) หลังเหตุการณ์ดังกล่าวผ่านไปแล้ว ๑๕ ปี (แต่บทความออกในปีค.ศ. ๒๐๑๔ หรือพ.ศ. ๒๕๕๗ นะ) เพื่อดูว่ามีการเผยแพร่สาเหตุของการระเบิดออกไปแพร่หลายมาเท่าใด เพื่อที่จะได้ไม่มีคนทำผิดพลาดซ้ำเดิมอีก (รูปที่ ๑)

รูปที่ ๒ แผนผังห้องที่เกิดเหตุ P3 คือถังเก็บสารทำความสะอาดที่เป็นสารผสมระหว่างกรดฟอสฟอริก (Phosphoric acid H3PO4) กับไอโซโพรพานอลที่เกิดการระเบิด ดังอักษรต่าง ๆ เป็นตำแหน่งความเสียหายที่เกิด มีทั้งเศษชิ้นส่วนปลิวออกไปในแนวตรง (เส้นประสีแดง) และที่ปลิวไปกระทบผนังและสะท้อนกลับ (เส้นประสีฟ้า) ตามแผนผัง ห้องกว้างประมาณ 15 เมตรและยาวประมาณ 20 เมตร

เหตุการณ์นี้เกิดขึ้นที่โรงงานผลิตเบียร์แห่งหนึ่งในประเทศเนเธอร์แลนด์เมื่อวันที่ ๒๘ พฤศจิกายนปึค.ศ. ๑๙๙๗ โดยในโรงงานนี้มีการใช้สารเคมีทำความสะอาดหลักอยู่ 2 ตัว ตัวแรกคือกรดไนตริกที่ใช้สำหรับทำความสะอาดคราบของแข็งเช่นพวกตะกรันที่เกาะอยู่ตามภาชนะและในระบบท่อ (คือใช้สะลายคราบตะกรันที่เกาะอยู่บนผนัง) สาเหตุที่ใช้กรดไนตริกก็เพราะมันไม่กัดกร่อนเหล็กกล้าไร้สนิม (ที่เราเรียกว่าสแตนเลสสตีล) และราคาไม่แพงเมื่อเทียบกับกรดฟอสฟอริก (เหล็กกล้าไร้สนิมเป็นวัสดุหลักที่ใช้ในการขึ้นรูปอุปกรณ์ต่าง ๆ ในอุตสาหกรรมการผลิตอาหาร เพราะมันไม่เกิดสนิมปนเปื้อนในผลิตภัณฑ์)

สารเคมีตัวที่สองมีชื่อเรียกว่า P3 สารนี้มีองค์ประกอบหลักเป็นกรดฟอสฟอริกโดยมีไอโซโพรพานอลเป็นส่วนผสมอยู่ประมาณ 5-15 % (รูปที่ ๓) ถังเก็บกรดไนตริกและถังเก็บ P3 นั้นตั้งอยู่เคียงข้างกัน (รูปที่ ๒) ถังทั้งสองมีลักษณะที่เหมือนกันโดยทำจากเหล็กกล้าไร้สนิมหนาประมาณ 5 mm และมีความจุประมาณ 1.7 m3 ในแง่ของผู้ปฏิบัติงานจะมองสารเคมีทั้งสองเป็นเพียงแค่ "กรด" ในห้องดังกล่าวนอกจากจะมีถัง "กรด" สองถังนี้แล้วยังมีถังอื่น ๆ อีก โดยแต่ละถังจะมีท่อต่อออกมายัง "nozzle wall panel" ที่อยู่ทางด้านนอกของอาคาร จุดนี้เป็นจุดสำหรับต่อสายยางและปั๊มเพื่อถ่ายของเหลวจากภาชนะเก็บ (สารเคมีมีการสำรองเก็บไว้ในอีกที่แห่งหนึ่ง) เข้าไปเติมถังเก็บในอาคาร

รูปที่ ๓ องค์ประกอบของสารเคมีทำความสะอาด P3 ที่มีกรดฟอสฟอริกเป็นตัวหลัก

เมื่อสารเคมีในถังเก็บในอาคารเก็บมีระดับลดต่ำลง โอเปอร์เรเตอร์ก็จะนำถังสารเคมีที่จะเติมมายัง nozzle wall panel นี้ ใช้จุ่มท่อด้านขาเข้าปั๊มส่งลงในถังสารเคมีที่จะเติม และต่อสายยางด้านขาออกของปั๊มเข้ากับหัวต่อ (ที่เรียกว่า nozzle ที่มีรูปแบบหลายรูปแบบ เช่นอาจเป็นข้อต่อแบบสวมเร็ว (quick couple) หรือเป็นหน้าแปลน ฯลฯ ซึ่งขึ้นอยู่กับชนิดสารเคมีและกระบวนการผลิต) จากนั้นก็จะทำการเดินเครื่องปั๊มเพื่อถ่ายสารเคมีจากถังเติมไปยังถังเก็บในอาคาร

ในกรณีของกรดไนตริกและสารทำความสะอาด P3 นั้น ใช้ปั๊มลำเลียงตัวเดียวกันและใช้รูปแบบข้อต่อด้านขาออกที่เหมือนกัน

ในวันที่เกิดเหตุนั้น ระดับกรดไนตริกในถังเก็บใกล้จะหมดถัง ในขณะที่ระดับของสารละลายในถัง P3 ใกล้จะเต็ม โอเปอร์เรเตอร์จึงนำเอาภาชนะเก็บกรดไนตริกจากโกดังเก็บมายัง nozzle wall panel ในขณะนั้นตัวปั๊มสูบกรดถูกติดตั้งอยู่ที่หัวต่อที่ nozzle wall panel อยู่ก่อนแล้ว โอเปอร์เรเตอร์จึงทำเพียงแค่จุ่มท่อดูดด้านขาเข้าปั๊มลงไปในภาชนะเก็บกรดไนตริก แล้วเริ่มเดินเครื่องปั๊ม

เนื่องจากหัวต่อสำหรับกรดไนตริกและสารทำความสะอาด P3 เป็นแบบเดียวกัน โอเปอร์เรเตอร์จึงไม่ได้สังเกตว่าตัวปั๊มนั้นต่ออยู่กับท่อต่อไปยังถังเก็บสารทำความสะอาด P3 ไม่ใช่ท่อสำหรับส่งสารไปยังถังเก็บกรดไนตริก

การระเบิดเกิดขึ้นหลังเริ่มเดินเครื่องปั๊มไปได้ประมาณ ๑๐-๑๕ นาที ประมาณว่ามีการปั๊มกรดไนตริกประมาณ 100-250 ลิตรส่งไปยังถังบรรจุสารทำความสะอาด P3 โดยก่อนที่จะเกิดการระเบิดเล็กน้อย โอเปอร์เรเตอร์รายหนึ่งเดินผ่านบริเวณดังกล่าวในระยะใกล้ แต่ไม่สังเกตุเห็นสิ่งผิดปรกติใดเกิดขึ้น (ข้อมูลตรงนี้มีความสำคัญในการพิจารณาว่าการระเบิดนั้นเกิดจากสาเหตุใด) หลังการระเบิดได้เกิดกลุ่มหมอกควันสีเหลืองแดงพวยพุ่งออกมาจากอาคารที่เกิดระเบิด

ในบทความกล่าวว่าเป็นแก๊สนั้นคือ nitrous oxideหรือ N2O แต่แก๊สตัวนี้เป็นแก๊สไม่มีสี ตัวที่น่าจะใช่มากกว่าน่าจะเป็นแก๊ส nitrogen dioxide หรือ NO2 เพราะแก๊สตัวนี้มีสีเหลืองแดงหรือน้ำตาลแดง ซึ่งขึ้นอยู่กับอุณหภูมิ โดยที่อุณหภูมิต่ำจะรวมตัวเป็นแก๊สไดไนโตรเจนเททรอกไซด์ (dinitrogen tetroxide (N2O4) ที่ไม่มีสี แต่เมื่ออุณหภูมิสูงขึ้นจะเป็น NO2ที่มีสีเหลืองแดงหรือน้ำตาลแดง (รูปที่ ๔) และแก๊สนี้เป็นแก๊สที่เมื่อละลายน้ำแล้วจะได้กรดไนตริก (NO2 + H2O ---> HNO3)

รูปที่ ๔ ที่อุณหภูมิต่ำ แก๊ส nitrogen dioxide (NO2) สองโมเลกุลจะรวมตัวกันเป็น dinitrogen tetroxide (N2O4) ที่เป็นแก๊สที่ไม่มีสี (ภาพจาก https://en.wikipedia.org/wiki/Nitrogen_dioxide)

ปฏิกิริยาระหว่างหมู่ -OH ของแอลกอฮอล์กับกรดไนตริกเป็นปฏิกิริยาที่คายความร้อนมาก ความร้อนที่ปฏิกิริยาคายออกมานั้นถ้าระบายไม่ทันก็จะทำให้กรดไนตริกร้อนจนสลายตัวได้ การสลายตัวของกรดไนตริกจะเกิดแก๊ส NO2 ที่มีสีเหลืองแดงหรือน้ำตาลแดง ถ้าหากเกิดแก๊สนี้ปริมาณมากในภาชนะและระบายออกไม่ทัน ก็จะทำให้ภาชนะระเบิดได้ แต่ในเหตุการณ์นี้ก่อนการระเบิดเพียงเล็กน้อย โอเปอร์เรเตอร์ที่เดินผ่านบริเวณดังกล่าวไม่สังเหตุเห็นเหตุการณ์ผิดปรกติใด ๆ จึงสรุปว่าการระเบิดไม่ได้เกิดจากการสะสมของแก๊ส NO2 ในถังเก็บสาระลายทำความสะอาด P3

ถังเก็บของเหลวที่มีจุดเดือดสูงจะมีช่องระบายอากาศที่ฝาด้านบนของถัง ช่องระบายอากาศนี้มีไว้เพื่อให้อากาศภายนอกไหลเข้าไปภายในถังเมื่อมีการสูบของเหลวออกจากถัง เพื่อปัองกันไม่ให้ความดันในถังต่ำจนโดยความกดอากาศข้างนอกบีบอัดจนถังบุบ และให้อากาศในถังไหลออกเมื่อมีการปั๊มของเหลวเข้าไปในถัง เพื่อป้องกันไม่ให้ความดันในถังสูงเกินไปจนทำให้ถังระเบิดออกได้ แต่โดยทั่วไปการออกแบบถังแบบนี้จะออกแบบให้รอยเชื่อมต่อระหว่างฝาถังกับส่วนลำตัวเป็นจุดอ่อน ที่เมื่อถ้าความดันในถังสูงเกิด ฝาถังจะปลิวออกก่อนที่ส่วนลำตัวจะเกิดความเสียหาย แต่ในเหตุการณ์นี้ส่วนลำตัวเกิดความเสียหายแตกออกเป็นชิ้นส่วนหลายชิ้นกระจายออกไปไกล จากขนาดของชิ้นส่วนน้ำหนักมากที่ปลิวไปได้ไกล และแรงปะทะที่ขิ้นส่วนต่าง ๆ กระทบเข้ากับผนังอาคารหรืออุปกรณ์อื่นที่อยู่ห่างออกไป บ่งบอกว่าความดันในถังเพิ่มสูงขึ้นอย่างรวดเร็วเกินกว่าที่ฝาถังจะเปิดออกทัน

รูปที่ ๕ ความเสียหายบริเวณตำแหน่งเครื่องกรอง (อักษร g ในรูปที่ ๒)

อีกสาเหตุที่มีความเป็นไปได้คือการเกิดสารประกอบไอโซโพรพิลไนเทรต (isopropyl nitrate H3C-CH(ONO2)-CH3) สารประกอบตัวนี้เตรียมได้จากปฏิกิริยาระหว่างกรดไนตริกกับไอโซโพรพานอล ในบางเอกสารกล่าววาจำเป็นต้องมีการใช้กรดกำมะถันเข้มข้น (H2SO4) เป็นตัวเร่งปฏิกิริยา แต่บางเอกสารก็ไม่กล่าวถึงการใช้กรดกำมะถันในการเตรียม (เช่นการเตรียม Nital ตอนต้นเรื่อง ก็ไม่ได้กล่าวถึงการใช้กรดกำมะถันเข้มข้นในการเตรียม) ในเหตุการณ์นี้คาดว่ากรดไนตริกที่เติมเข้าไป ทำปฏิกิริยากับไอโซโพรพานอลที่เป็นส่วนประกอบของสารทำความสะอาด P2 และความร้อนที่คายออกมาจากปฏิกิริยานั้นเมื่อสูงมากพอก็ทำให้ไอโซโพรพิลไนเทรตระเบิด

การลดโอกาสที่จะต่อท่อผิดทำได้หลายวิธี เช่นการทำป้าย, ทำเครื่องหมาย และใช้สี ที่มองเห็นได้ชัดเจน การทำให้ไม่สามารถสลับสายยางต่อเข้าด้วยกันได้ เช่นการใช้ข้อต่อที่แตกต่างกัน หรือการใช้ข้อต่อที่มีขนาดที่แตกต่างกัน ซึ่งการใช้ข้อต่อที่แตกต่างกันนี้ในบางงานมันก็ทำงานได้ดี เช่นการถอดชิ้นส่วนออกมาซ่อมบำรุงและประกอบกลับคืนหลังทำงานเสร็จ 

รูปที่ ๖ ความเสียหายบริเวณตำแหน่ง b ในรูปที่ ๒ จะเห็นว่าชิ้นส่วนของถังนั้นฝังเข้าไปในผนังคอนกรีต

ตัวอย่างสำคัญตัวอย่างหนึ่งที่แสดงให้เห็นความเสียหายจากการประกอบท่อกลับคืนผิดน่าจะเป็นกรณี โรงงาน HDPE ระเบิดที่ เมือง Pasadena มลรัฐ Texas ประเทศสหรัฐอเมริกาเมื่อวันที่ ๒๓ ตุลาคม ๒๕๓๒ (บทความบน blog เรื่อง "โรงงาน HDPE ระเบิดที่ Pasadena เมื่อ ๒๓ ตุลาคม ๒๕๓๒" วันอังคารที่ ๒๔ กันยายน ๒๕๕๖) ที่เกิดจากการต่อท่ออากาศอัดความดันที่ใช้ควบคุมการเปิด-ปิดวาล์วผิด (เพราะใช้ข้อต่อแบบเดียวกันและท่อมีขนาดเท่ากัน) ทำให้เมื่อทำการสั่งปิดวาล์ว วาล์วจะเปิด และในทางกลับกันเมื่อทำการสั่งเปิดวาล์ว วาล์วจะปิด เหตุเกิดเมื่อโอเปอร์เรเตอร์ต้องทำงานซ่อมบำรุงที่ต้องมีการถอดท่อออก โดยก่อนถอดท่อออกก็ได้มีการสั่ง "ปิด" วาล์ว (ด้วยการใช้อากาศอัดความดันผลักดันกลไกควบคุมการเปิด-ปิด) แต่ในความเป็นจริงคือวาล์วจะไปอยู่ในตำแหน่ง "เปิด" ผลของความผิดพลาดครั้งนั้นทำให้มีผู้เสียขีวิต ๒๓ รายและบาดเจ็บกว่าร้อยราย บทเรียนหนึ่งที่ได้จากเหตุการณ์นี้คือถ้าหากออกแบบให้ท่ออากาศที่ควบคุมการเปิดและปิดวาล์วนั้นแตกต่างกัน (เช่นใช้ท่อขนาดต่างกันหรือใช้ข้อต่อที่ไม่เหมือนกัน) ก็จะสามารถปัองกันการต่อท่อผิดได้

ในกรณีของโรงงานนี้ใช้ปั๊มเพียงตัวเดียวในการสูบน้ำกรดจากถังเติมเพื่อไปเติมให้กับถังเก็บในอาคาร การสูบน้ำกรดจากถังเติมใช้การจุ่มท่อด้านขาเข้าของปั๊มลงไปในถังเติม ดังนั้นจะมีประเด็นเรื่องต่อท่อถูกต้อง แต่หยิบถังน้ำกรดสำหรับเติมมาผิดถัง เกิดขึ้นได้

วันพฤหัสบดีที่ 24 มีนาคม พ.ศ. 2565

เมื่อไฮโดรเจนเปอร์ออกไซด์ (H2O2) ผสมกับกรดไนตริก (HNO3) MO Memoir : Thursday 24 March 2565

ทั้งกรดไนตริก (Nitric acid HNO3) และไฮโดรเจนเปอร์ออกไซด์ (Hydrogen peroxide H2O2) ต่างเป็นสารออกซิไดซ์ (oxidising agent) และเป็นสารอันตรายทั้งคู่ และถ้านำสารละลายความเข้มข้นสูงของสารทั้งสองมาผสมกันในสัดส่วนที่พอเหมาะ อันตรายก็จะเพิ่มขึ้นไปอีก (รูปที่ ๑)

รูปที่ ๑ สัดส่วนความเข้มข้นของกรดไนตริกและไฮโดรเจนเปอร์ออกไซด์ที่ไม่ทำปฏิกิริยากัน (Unreactive) และที่มีโอกาสเกิดปฏิกิริยารุนแรง (Highly Reactive) รูปนี้นำมาจากเอกสาร HYDROGEN PEROXIDE REACTION HAZARDS : Technical Data Sheet ของบริษัท Solvay

แต่ก็มีบางงานที่สารทั้งสองต้องมาทำปฏิกิริยากัน เช่นการควบคุมการปลดปล่อยแก๊สไนโตรเจนออกไซด์ (NOx) โดยให้แก๊สปล่อยทิ้งที่มีไนโตรเจนออกไซด์ผสมอยู่นั้นทำปฏิกิริยากับสารละลายไฮโดรเจนเปอร์ออกไซด์ ทำให้เกิดกรดไนตริกดังสมการ

2NO + 3H2O2 -----> 2HNO3 + 2H2O

2NO2 + H2O2 -----> 2HNO3

ในปฏิกิริยานี้ความเข้มข้นไฮโดรเจนเปอร์ออกไซด์จะลดลง ในขณะที่ความเข้มข้นของกรดไนตริกนั้นจะเพิ่มสูงขึ้น

กรดไนตริกเองยังถูกใช้ทำ "passivation" คือการล้างสิ่งปนเปื้อนและออกซิไดซ์พื้นผิวที่จะสัมผัสกับไฮโดรเจนเปอร์ออกไซด์ เพื่อให้พื้นผิวนั้นไม่ไปทำให้ไฮโดรเจนเปอร์ออกไซด์สลายตัว (เครื่องแก้วที่ใช้กันในห้องปฏิบัติการเคมีก็สามารถทำให้ไฮโดรเจนเปอร์ออกไซด์สลายตัวได้) ในงานนี้หลังจากทำการ passivation แล้วต้องล้างกรดไนตริกออกจากพื้นผิวให้หมดก่อนที่จะทำการบรรจุไฮโดรเจนเปอร์ออกไซด์เข้าระบบ

แต่ก็มีงานหนึ่งที่จงใจผสมกรดไนตริกความเข้มข้นสูงและไฮโดรเจนเปอร์ออกไซด์ความเข้มข้นสูงเข้าด้วยกัน นั่นคือการย่อยสลายตัวอย่างทางชีวภาพเพื่อทำการวิเคราะห์หาปริมาณธาตุ เทคนิคดังกล่าวทำการผสมกรดไนตริกกับไฮโดรเจนเปอร์ออกไซด์และตัวอย่างที่ต้องการย่อยสลายในภาชนะที่ทำจากเทฟลอน (PTFE) รับความดันได้ (ทำในระบบปิด) และให้ความร้อนด้วยเครื่องไมโครเวฟ เทคนิคนี้จะใช้เวลาสั้นกว่าเทคนิคแบบเดิมที่ทำในภาชนะเปิดและให้ความร้อนด้วยเตา

บทความเรื่อง " "Spontaneous Reaction for Acid Dissolution of Biological Tissues in Closed Vessels" โดย R.N. Sah และ R.O Miller" ทำศึกษาการย่อยสลายตัวอย่างด้วยวิธีการที่กล่าวมาข้างต้น ในงานวิจัยนี้ใช้กรดไนตริกเข้มข้น 70%w/w และไฮโดรเจนเปอร์ออกไซด์ 30% ผลการทดลองพบว่าที่บางสัดส่วนของการผสมนั้น กรดไนตริกและไฮโดรเจนเปอร์ออกไซด์ทำปฏิกิริยากันอย่างรุนแรงจนความดันในภาชนะที่ใช้ย่อยสลายตัวอย่างนั้นเพิ่มสูงขึ้นมากอย่างรวดเร็วดังแสดงในรูปที่ ๒ ข้างล่าง

รูปที่ ๒ การเพิ่มความดันอย่างกระทันหันเนื่องจากกรดไนตริกและไฮโดรเจนเปอร์ออกไซด์ความเข้มข้นสูงทำปฏิกิริยากัน (จากบทความเรื่อง "Spontaneous Reaction for Acid Dissolution of Biological Tissues in Closed Vessels" โดย R.N. Sah และ R.O Miller, Anal. Chem. 64,230 (1992)

สิ่งที่น่าสนใจคือ ข้อมูลในรูปที่ ๑ ที่กล่าวว่ากรดไนตริกเข้มข้นและไฮโดรเจนเปอร์ออกไซด์เข้มข้นสามารถทำปฏิกิริยากันได้อย่างรุนแรง มีการเผยแพร่ในปีค.ศ. ๑๙๓๘ (เสียดายที่ทางผมไม่สามารถหาบทความต้นฉบับได้ เนื่องจากทางมหาวิทยาลัยไม่ได้บอกรับวารสารดังกล่าว) ส่วนปฏิกิริยารุนแรงในรูปที่ ๒ นั้นมีการเผยแพร่ในปีค.ศ. ๑๙๙๒ หรือห่างจากบทความแรกถึง ๕๔ ปี ที่ทางคณะผู้วิจัยนั้นรายงานเหมือนว่าเป็นการค้นพบสิ่งใหม่ สาเหตุหนึ่งคาดว่าอาจเป็นเพราะการเผยแพร่ในปีค.ศ. ๑๙๓๘ นั้นตีพิมพ์ในวารสารที่ไม่ได้มีการบอกรับเป็นวงกว้าง

จุดที่ยังเป็นข้อสงสัยอยู่คือผลิตภัณฑ์ที่เกิดจากการทำปฏิกิริยาระหว่างไฮโดรเจนเปอร์ออกไซด์และกรดไนตริกคืออะไร ทำไมจึงทำให้เกิดการคายความร้อนอย่างรุนแรงจนเกิดแก๊สจำนวนมาก ปฏิกิริยาหนึ่งที่มีรายงานว่าเป็นไปได้คือการเกิดกรด pernitric acid หรือ peroxynitric acid (HO(NO3) แต่ข้อมูลของกรดตัวนี้ก็ไม่มีรายละเอียดใด ๆ มากนัก อีกความเป็นไปได้หนึ่งคืออาจไม่มีปฏิกิริยาเข้ามาเกี่ยวข้อง แต่การละลายเข้าด้วยกันมีการคายความร้อนในปริมาณมากออกมา และความร้อนนี้ไปเร่งการสลายตัวของไฮโดรเจนเปอร์ออกไซด์และกรดไนตริกที่ทำให้มีการคายความร้อนและเกิดแก๊สขึ้น

รูปที่ ๓ นำมาจากบทความเรื่อง "Seven workers injured due to nitric acid vapor intoxication" จากเว็บ https://www.aria.developpement-durable.gouv.fr/accident/52762_en/?lang=en เป็นเหตุการณ์ที่คนงานเข้าใจผิด หยิบถังบรรจุไฮโดรเจนเปอร์ออกไซด์ที่ยังมีไฮโดรเจนเปอร์ออกไซด์หลงเหลืออยู่ เพื่อนำไปใช้บรรจุกรดไนตริกเข้มข้น โดยในช่วงเช้าหลังจากเติมกรดลงไป โอเปอร์เรเตอร์พบว่าถังบรรจุ (ถังพอลิเอทิลีน) มีอาการบวม เลยคลายฝาปิดเพื่อระบายแก๊สออก โดยทำอย่างนี้อยู่สองครั้งระหว่างขนถังบรรจุที่เติมกรดแล้วไปยังบริเวณจัดเก็บ และในช่วงสายวันเดียวกัน ถังดังกล่าวก็เกิดการระเบิดทำให้มีกรดและไอกรดกระจายออกมา

รูปที่ ๓ คำบรรยายเหตุการณ์ที่เกิดจากการเติมกรดไนตริกเข้มข้นลงในถังบรรจุไฮโดรเจนเปอร์ออกไซด์โดยอุบัติเหตุ (เหจุเกิดเมื่อวันที่ ๒๖ เมษายน ค.ศ. ๒๐๑๓)

เหตุการณ์นี้แสดงให้เห็นถึงการไม่มีการติดฉลากที่เหมาะสม ทำให้มีการหยิบถังบรรจุผิดใบ และอาจรวมไปถึงการใช้ถังบรรจุที่มีลักษณะ (เช่นสี รูปร่าง และขนาด) ที่เหมือนกัน ซึ่งเป็นการเพิ่มโอกาสที่จะทำงานผิดพลาด

สิ่งที่น่าตั้งคำถามอีกข้อหนึ่งก็คือ เมื่อบรรจุกรดลงไปในถังแล้ว ความดันในถังเพิ่งสูงขึ้นจนทำให้ถังบวมออก ทำไมโอเปอร์เรเตอร์จึงไม่เฉลียวใจว่ามีความผิดปรกติเกิดขึ้น โอเปอร์เรเตอร์ทำเพียงแค่คลายฝาปิดให้ความดันในถังลดลงแล้วก็ปิดฝากลับคืนเดิม การที่ความดันในถังเพิ่มขึ้นจนถังบวมนั้นเกิดขึ้นเป็นครั้งแรก หรือว่าก่อนหน้านี้เคยเกิดเหตุการณ์ทำนองเดียวกันนี้มาแล้ว แต่ไม่เกิดผลกระทบที่รุนแรงตามมา ก็เลยคิดว่าไม่เป็นอะไร