แสดงบทความที่มีป้ายกำกับ เบดนิ่ง แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ เบดนิ่ง แสดงบทความทั้งหมด

วันพุธที่ 28 เมษายน พ.ศ. 2564

อัตราส่วน Length-to-Diameter ที่เหมาะสมของ Fixed-bed reactor MO Memoir : Wednesday 24 April 2564

เมื่อสัปดาห์ที่แล้วได้รับอีเมล์ฉบับหนึ่งจากสถาบันการศึกษาใกล้แม่น้ำเจ้าพระยา เห็นว่าคำถามของเขาน่าสนใจดีก็ สิ่งที่ผมตอบเขาไปตอนนั้นก็คือ "มันไม่มีกฎเกณฑ์ตายตัว" เพราะขึ้นกับปัจจัยหลาย ๆ อย่าง ส่วนจะมีปัจัยใดบ้างนั้นก็จะขอนำมารวบรวมไว้ในบทความนี้ (เฉพาะเท่าที่คิดออกตอนเขียนบนความนี้)

สำหรับผู้ที่เรียนวิศวกรรมเคมีแล้ว ในเรื่องของการหาขนาดของเครื่องปฏิกรณ์ (chemical reactor หรือที่มักจะเรียกกันสั้น ๆ ว่า reactor) จะมีพารามิเตอร์ตัวหนึ่งโผล่เข้ามาคือ "space velocity" ซึ่งถ้าเป็นกรณีของปฏิกิริยาเอกพันธุ์ (homogeneous reaction) ค่านี้จะเท่ากับอัตราการไหลของของไหลหารด้วยปริมาตรของเครื่องปฏิกรณ์ (ดังนั้นหน่วยของมันจะเป็น "ต่อเวลา") ถ้าของไหลนั้นเป็นแก๊สและหน่วยเวลาเป็นชั่วโมง ก็จะเรียกว่า Gas Hourly Space Velocity (GHSV) และถ้าของไหลนั้นเป็นของเหลวก็จะเรียกว่า Liquid Hourly Space Velocity (LHSV) ความหมายในทางปฏิบัติก็คือถ้าเครื่องปฏิกรณ์สองตัวมีขนาดที่แตกต่างกัน แต่ถ้าค่า GHSV (หรือ LHSV) เท่ากัน ก็ควรจะได้ค่า conversion (สัดส่วนสารตั้งต้นที่ทำปฏิกิริยาไป) เท่ากัน

แต่ในกรณีของปฏิกิริยาวิวิธพันธุ์ (heterogeneous reaction) ที่มีการใช้ตัวเร่งปฏิกิริยาที่เป็นของแข็งบรรจุอยู่ในเบดนิ่ง (fixed bed หรือ packed bed) นั้น ปฏิกิริยาจะเกิดได้มากหรือน้อยนั้นขึ้นอยู่กับปริมาณตัวเร่งปฏิกิริยาที่มีอยู่ ไม่ได้ขึ้นกับปริมาตรเครื่องปฏิกรณ์ เพราะถ้าไม่มีตัวเร่งปฏิกิริยา ปฏิกิริยานั้นก็จะไม่เกิด ค่า space velocity ตรงนี้ก็จะเปลี่ยนเป็นคิดเทียบต่อหน่วยน้ำหนักตัวเร่งปฏิกิริยาแทนปริมาตรเครื่องปฏิกรณ์ กล่าวคือจะเท่ากับอัตราการไหล (ของของไหล) ต่อหน่วยน้ำหนักตัวเร่งปฏิกิริยา ในกรณีนี้ก็จะเรียกว่าเป็น Weight Hourly Space Velocity (WHSV)

ลองมาดูกรณีของ fixed-bed นิดนึง สมมุติว่าเครื่องปฏิกรณ์เครื่องหนึ่งบรรจุตัวเร่งปฏิกิริยาอย่างเดียว 100 kg โดยเบดมีปริมาตร V1 ส่วนเครื่องที่สองนำตัวเร่งปฏิกิริยา 100 kg เท่ากัน แต่มาผสมกับ inert material จนเบดมีปริมาตร V2 ที่มีค่าเป็น 2 เท่าของ V1 (หรือ V2 = 2V1) ถ้าเราถือว่าปริมาตรของเบดคือปริมาตรของเครื่องปฏิกรณ์ เครื่องที่ 2 ก็จะมี GHSV เพียงครึ่งเดียวของเครื่องที่หนึ่ง ดังนั้นค่า conversion ที่ได้น่าจะแตกต่างกัน แต่ถ้าคิดในรูปของ WHSV แล้ว ทั้งสองเครื่องนั้นมีน้ำหนักตัวเร่งปฏิกิริยาเท่ากัน แม้ว่าปริมาตรเบดจะต่างกัน มันก็จะมีค่า conversion เหมือนกัน

fixed-bed นั้นส่วนใหญ่จะวางในแนวตั้ง ตัวเบดจะมีลักษณะเป็นทรงกระบอก และการไหลผ่านเบดนั้นจะเป็นการไหลผ่านในแนวแกนตั้ง (ส่วนใหญ่จะเป็นแบบบนลงล่าง) มันมีบางแบบเหมือนกันที่เบดวางในแนวตั้ง แต่เบดเป็นรูปวงแหวนคือมีรูตรงแกนกลาง และการไหลจะเป็นในแนวรัศมี เช่นแก๊สไหลเข้าไปในช่องว่างตอนกลาง และไหลผ่านเบดในแนวรัศมีออกไปทางด้านข้าง แต่ในที่นี้จะขอจำกัดเฉพาะเบดที่วางตั้งและเป็นการไหลในแนวแกนเท่านั้น

ก่อนอื่นต้องขอแยกระหว่าง "ปริมาตรของ vessel ที่บรรจุเบด" และ "ปริมาตรของเบด"

vessel นั้นมีปริมาตรที่มากกว่าเบดอยู่แล้ว เพียงแต่ในแต่ละ vessel ไม่จำเป็นต้องมีเบดเดียวต่อเนื่อง แต่อาจประกอบด้วยชั้นเบดตื้น ๆ หลายเบดเรียงต่อกันอยู่ภายใน อย่างเช่น reactor ที่ใช้ในการออกซิไดซ์ SO2 ไปเป็น SO3 ในรูปที่ ๑ ข้างล่าง ดังนั้นถ้าคิดปริมาตรเบดเพื่อให้ได้ค่า conversion ที่ต้องการ ก็ต้องเอาปริมาตรเบดสั้น ๆ เหล่านี้มาบวกรวมกัน

รูปที่ ๑ fixed-bed ที่ใช้ในการออกซิไดซ์ SO2 ไปเป็น SO3 (จากสิทธิบัตรประเทศสหรัฐอเมริกาเลขที่ 8,758,718 B2 เรื่อง "Low temperature sulphur dioxide oxidation catalyst for sulfuric acid manufacture" ซึ่งเป็นชื่อที่แปลกตรงที่ตรง sulphur dioxide นั้นสะกดแบบ UK แต่พอมาเป็น sulfuric acid ดันมาสะกดแบบอเมริกา)

ทีนี้สมมุติว่าเราคำนวณออกมาแล้วว่าเพื่อให้ได้ค่า conversion ที่ต้องการนั้นต้องใช้ตัวเร่งปฏิกิริยาหนักเท่าใด และจาก bulk density ของตัวเร่งปฏิกิริยา เราก็จะสามารถคำนวณหาปริมาตรของเบดได้ แต่ปริมาตรของเบดทรงกระบอกคือผลคูณะหว่างพื้นที่หน้าตัด (D) และความลึกของเบด (L) คำถามที่เขาถามผมมาก็คือ มันมีเกณฑ์อะไรกำหนดไว้หรือไม่ว่าอัตราส่วนระหว่าง L ต่อ D นั้นควรมีค่าอยู่ในช่วงเท่าใด ซึ่งคำตอบที่ผมให้เขาไปก็คือ "มันไม่มีกฎเกณฑ์ตายตัว"

ทีนี้มันมีปัจจัยอะไรบ้างที่ส่งผลต่อการเลือกว่าจะให้เบดนั้นกว้างแต่ตื้น (D มาก L น้อย) หรือจะให้เบดนั้นแคบแต่ลึก (D น้อย L มาก) ตัวแรกที่จะขอยกมาก็คือ "ความดัน" ที่ใช้ในการทำปฏิกิริยา

ที่เนื้อโลหะหนาเท่ากัน vessel ที่มีเส้นผ่านศูนย์กลางเล็กจะรับความดันได้สูงกว่าตัวที่มีขนาดเส้นผ่านศูนย์กลางใหญ่กว่า ดังนั้นสำหรับระบบความดันสูง ถ้าเลือกเบดที่มีพื้นที่หน้าตัดกว้าง ก็ต้องทำใจว่าผนัง reactor จะต้องหนามากตามไปด้วย (ซึ่งส่งผลต่อค่าใช้จ่ายในการผลิต reactor และการเตรียมสถานที่สำหรับติดตั้ง)

ปัจจัยที่สองก็คือ "ความดันลดคร่อมเบด" หรือ pressure drop ที่ยอมรับได้ ที่อนุภาคตัวเร่งปฏิกิริยาขนาดเท่ากันและ volumetric flow rate เดียวกัน เบดที่กว้างแต่ตื้นนั้นจะมี pressure drop น้อยกว่าเบดที่แคบแต่ลึก แต่เมื่อความเร็วในการไหลลดต่ำลง ก็ต้องระวังเรื่องของ external mass and heat transfer resistance ด้วย

คือเวลาที่ fluid ไหลผ่านอนุภาคของแข็ง บริเวณรอบ ๆ ผิวของแข็งนั้นอาจมีชั้นฟิล์มของไหลหุ้มอยู่รอบอนุภาค ชั้นฟิล์นี้เป็นชั้นต้านทานการแพร่ของสารตั้งต้น/ผลิตภัณฑ์ระหว่าง bulk fluid และพื้นผิวตัวเร่งปฏิกิริยาได้ ที่อัตราเร็วในการไหลที่สูงพอถึงระดับหนึ่ง ชั้นฟิล์มนี้จะหายไป แต่ถ้าไปลดอัตราการไหลให้ต่ำลงเพื่อหวังจะลด pressure drop โดยที่ยังไม่เกิดชั้นฟิล์มมันก็จะไม่มีปัญหาอะไร แต่ถ้าลดต่ำเกินไปจนเกิดชั้นฟิล์มนี้ขึ้น อัตราการเกิดปฏิกิริยาจะลดต่ำลง (แม้ว่า WHSV จะคงเดิม) ในกรณีของปฏิกิริยาคายความร้อนนั้น อนุภาคตัวเร่งปฏิกิริยาจะรับความร้อนที่ปฏิกิริยาคายออกมา และมันต้องระบายความร้อนนี้ต่อให้กับ bulk fluid ที่ไหลผ่าน และถ้าเกิดชั้นฟิล์มนี้เมื่อใด การระบายความร้อนจะลดต่ำลง ทำให้อุณหภูมิตัวเร่งปฏิกิริยาเพิ่มสูงขึ้น และถ้ามากเกินไปก็อาจทำความเสียหาย (แบบถาวร) ให้กับตัวเร่งปฏิกิริยาได้ สำหรับการทดลองในระดับห้องปฏิบัติการหรืองานวิจัยที่ไม่ได้ใช้อัตราการไหลที่สูงมากนั้น ปัญหานี้มีโอกาสที่จะพบเจอได้ง่ายถ้าไม่ระวัง

รูปที่ ๒ ตัวอย่างหน้าตา furnace ของปฏิกิริยา steam reforming ที่จะบรรจุตัวเร่งปฏิกิริยาไว้ในท่อสีแดง แก๊สสารตั้งต้นที่ป้อนเข้ามาจะถูกกระจายให้ไหลเข้าไปในท่อเหล่านี้ที่ทำหน้าที่เหมือน fixed-bed ที่มีหน้าตัดแคบแต่ยาวมาก แล้วค่อยมารวมกันใหม่ที่ทางออก (จากเอกสาร Industrial Solutions. "Ammonia technology" ของ thyssenkrupp

ปัจจัยสุดท้ายที่ขอกล่าวถืงก็คือ "การเปลี่ยนแปลงพลังงาน" ของการเกิดปฏิกิริยา ในกรณีของ fixed-bed นั้น ถ้าปฏิกิริยานั้นมีการดูดหรือคายพลังงานต่ำมาก เราก็พอจะประมาณได้ว่า fixed-bed นั้นทำงานแบบ Isothermal หรืออุณหภูมิคงที่ และถ้าปฏิกิริยานั้นมีการดูดหรือคายพลังงานไม่มากเกินไป ก็จะให้ fixed-bed นั้นทำงานแบบ adiabatic คือถือว่าไม่มีการถ่ายเทความร้อนระหว่างตัวเบดกับสภาพแวดล้อม คือปล่อยให้อุณหภูมิในเบดลดลงไปเรื่อย ๆ (ในกรณีของปฏิกิริยาดูดความร้อน) หรือปล่อยให้มันเพิ่มสูงขึ้นเรื่อย ๆ (ในกรณีของปฏิกิริยาคายความร้อน)

การเกิดปฏิกิริยาใน fixed-bed ที่ทำงานแบบ adiabatic นั้น ถ้าเป็นปฏิกิริยาดูดความร้อนก็จะทำการให้ความร้อนแก่สารตั้งต้นก่อนไหลเข้าเบด และเมื่อปฏิกิริยาดำเนินไปข้างหน้าเรื่อย ๆ อุณหภูมิก็จะลดต่ำลง ทำให้ปฏิกิริยามีแนวโน้มที่จะหยุดการเกิด แต่ถ้าผ่านเบดแรกแล้วยังไม่ได้ค่า conversion ที่ต้องการ ก็จะมีการป้อนความร้อนเพิ่มเติมให้กับสารที่ออกมาจากเบดแรก แล้วป้อนเข้าเบดที่สองต่อ ทำเช่นนี้ต่อไปเรื่อย ๆ จนกว่าจะได้ค่า conversion ที่ต้องการ

ในกรณีของปฏิกิริยาคายความร้อนจะตรงข้ามกัน คือเมื่อปฏิกิริยาดำเนินไปข้างหน้าเรื่อย ๆ อุณหภูมิในเบดจะเพิ่มสูงขึ้น (แบบ exponential) จนอาจควบคุมไม่ได้ หรือไม่ก็ส่งผลต่อค่าคงที่สมดุล (คือได้ผลิตภัณฑ์ลดลง) ถ้าเป็นแบบนี้ก็จะใช้การทำงานในรูปแบบเบดสั้น ๆ หลายเบดทำงานเป็นอนุกรมต่อกัน คือจะลดอุณหภูมิแก๊สที่ออกจากเบดแรกให้เย็นตัวลงก่อนที่จะเข้าสู่เบดที่สอง และทำเช่นนี้ถัดไปเรื่อย ๆ ดังเช่นตัวอย่างที่แสดงในรูปที่ ๑ ที่เป็นกรณีของการออกซิไดซ์ SO2 ไปเป็น SO ที่เป็นเบดสั้น ๆ หลายเบดต่ออนุกรมกัน โดยมีการระบายความร้อนออกจากแก๊สก่อนไหลเข้าเบดถัดไป ลักษณะของเบดแบบนี้มันจะกว้างแต่ตื้นได้ อัตราส่วน L/D ของแต่ละเบดมีค่าต่ำ

แต่ในกรณีของปฏิกิริยาที่มีการดูดความร้อนสูงมากหรือคายความร้อนสูงมากนั้น การแยกเบดเป็นเบดตื้น ๆ หลายตัวต่ออนุกรมกันเพื่อให้ได้ค่า conversion ที่ต้องการนั้นจะมีปัญหา เพราะจะกลายเป็นว่าเบดต้องตื้นมาก (ปฏิกิริยา partial oxidation บางปฏิกิริยานั้น อุณหภูมิในเบดสามารถเพิ่มขึ้นได้ถึง 100ºC ภายในระยะทางแค่ 10 cm) ในกรณีเช่นนี้จะแก้ปัญหาด้วยการแยกเป็นเบดที่มีพื้นที่หน้าตัดเล็ก ๆ จำนวนมาก (เรียกว่าเอา tube มาเป็น reactor ก็ได้) ทำงานคู่ขนานกัน โดยมีการให้ความร้อนหรือระบายความร้อนแก่ตัวเบดตลอดทั้งความยาว reactor พวกนี้จะมีค่าอัตราส่วน L/D ที่สูง ก็เพราะทรงกระบอกที่เล็กลงจะมีพื้นที่ผิวต่อหน่วยปริมาตรสูงขึ้น การถ่ายเทความร้อนระหว่างผนัง tube กับแกนกลางเบดก็จะทำได้ดีขึ้น

อย่างเช่นในกรณีของปฏิกิริยา steam reforming ที่เกิดที่อุณหภูมิระดับ 1000ºC นั้น (ปฏิกิริยาระหว่าง CH4 กับไอน้ำ เพื่อผลิต H2 และ CO โดยมี CO2 แถมด้วย) ตัว reactor ก็คือ tube ที่ติดตั้งอยู่ใน furnace (รูปที่ ๒) ที่มีอยู่จำนวนมากเรียงตัวคู่ขนานกัน การให้ความร้อนก็ใช้เปลวไฟที่อยู่ภายนอกท่อ แก๊สที่ไหลเข้ามาก็จะแยกเข้าแต่ละ tube และไปบรรจบกันที่ทางออกใหม่

ถ้าเป็นปฏิกิริยาคายความร้อนเช่นพวก partial oxidation ก็ให้นึกภาพ shell and tube heat exchanger ที่วางตั้ง โดยที่แต่ละ tube จะมีตัวเร่งปฏิกิริยาบรรจุอยู่และทำหน้าที่เสมือนเป็น fixed-bed reactor เล็ก ๆ โดยเพื่อให้ได้กำลังการผลิตที่ต้องการ จะต้องมี tube มากเกินกว่า 10,000 tube ก็ไม่ใช่เรื่องผิดปรกติ ที่เคยเห็นมาตัวหนึ่งก็เป็น tube ขนาดเพียงแค่ 25 mm แต่บรรจุตัวเร่งปฏิกิริยาไว้ลึก 2.0 - 3.0 เมตร และจำนวน tube ก็มากกว่า 10,000 tube

ด้วยการที่เบดมีหน้าตัดเล็กแต่ลึก ดังนั้นเพื่อไม่ให้ค่า pressure drop นั้นสูงเกินไป ขนาดอนุภาคตัวเร่งปฏิกิริยาเทียบกับเส้นผ่านศูนย์กลางเบดก็เรียกว่าใหญ่อยู่เหมือนกัน ตัวอย่างหนึ่งที่เคยเห็นก็คือเบดขนาดเส้นผ่านศูนย์กลาง 25 mm ลึก 2.5 m ใช้ตัวเร่งปฏิกิริยาขนาด 8 mm

วันศุกร์ที่ 22 กุมภาพันธ์ พ.ศ. 2562

MO ตอบคำถาม การทดลอง gas phase reaction ใน fixed-bed MO Memoir : Friday 22 February 2562

เมื่อค่ำวันวานมีอาจารย์ท่านหนึ่งจากห้องปฏิบัติการวิจัยในสถาบันการศึกษาแห่งหนึ่ง ที่ตั้งอยู่คนละฟากฝั่งแม่น้ำกับสถานที่ทำงานของผม โทรมาสอบถามเรื่องปัญหาเกี่ยวกับการทำการทดลอง อันที่จริงก่อนหน้านี้เมื่อสัปดาห์ที่ตอนวันวาเลนไทน์แล้วเขาก็เคยโทรมาปรึกษาครั้งหนึ่ง ซึ่งจะว่าไปแล้วเรื่องที่เขาถามนั้นจะว่าไปก็เป็นเรื่องที่ผมเองก็พบเห็นมานานแล้วตั้งแต่กลับมาทำงานใหม่ ๆ เมื่อกว่า ๒๐ ปีที่แล้ว และบางเรื่องก็เคยเขียนลง blog เอาไว้เหมือนกัน และบังเอิญคราวนี้มีคำถามแบบเดียวกันมาเป็นชุด ๆ ก็เลยขอรวบรวมเอาไว้เสียหน่อย (เผื่อ google จะได้มีโอกาสหาเจอมากขึ้นเวลามีคนค้นหาคำตอบของคำถามแบบนี้) เพราะมันเป็นเรื่องที่ดูเหมือนว่าจะไม่มีใครเขียนเอาไว้ และบางเรื่องมันเป็นเรื่องที่วิธีการแก้ปัญหานั้นได้จากประสบการณ์ที่ลงมือทำโดยตรง ไม่ใช่ได้จากฟังคนอื่นเขาบอกเล่ามาอีกที
 
ปฏิกิริยาที่เขาทดลองนั้นเป็นปฏิกิริยาในเฟสแก๊สที่เกิดขึ้นใน fixed-bed catalytic reactor ที่อุณหภูมิสูง ในการทดลองนั้นเขาผสมแก๊ส ๒ ตัวคือ A และ B เข้าด้วยกัน โดยแก๊ส A มีอัตราการไหลที่ต่ำกว่าแก๊ส B มาก (คือประมาณ 10%) การวัดอัตราการไหลใช้ bubble flow meter โดยใช้เส้นทาง bypass ที่ไม่ผ่าน reactor ส่วนแก๊สขาออกจาก reactor นั้นเข้าสู่ระบบเก็บตัวอย่างเพื่อวิเคราะห์ด้วยเครื่อง gas chromatograph (GC) รูปข้างล่างเป็นรูปที่ผมวาดขึ้นเองจากจินตนาการที่ฟังเขาเล่าให้ฟัง แต่ก็คิดว่าน่าจะใกล้เคียงกับของจริง เพราะตอนที่ผมเสนอแนะวิธีแก้ปัญหาให้เขาผมก็อิงเอาจากรูปที่ผมสร้างขึ้นจากจินตนาการรูปนี้ ถ้าของจริงกับที่ผมฝันเอาไว้มันเป็นคนละเรื่องกันเลยล่ะก็ แสดงว่าวิธีแก้ปัญหาที่ผมแนะนำให้เขาไปคงจะไม่ได้ผล



รูปที่ ๑ แผนผังระบบการทำปฏิกิริยา แก๊ส A ที่มีอัตราการไหลที่ต่ำ (ประมาณ 10% ของแก๊ส B) จ่ายมาจากถังที่ความดัน P0 ก่อนผ่านวาล์วปรับอัตราการไหล และผสมรวมเข้ากับแก๊ส B ด้วยการใช้ข้อต่อ ๓ ทาง (Tee) โดยให้แก๊สแต่ละสายเข้ามาบรรจบแบบไหลชนกันและออกตรงกลาง (แก๊สทั้งคู่เป็น reactant gas ไม่มีการผสมแก๊สเฉื่อย) การวัดอัตราการไหลใช้ bubble flow meter โดยใช้เส้นทาง bypass ตัว reactor และวัดที่อุณหภูมิห้องและความดันบรรยากาศ ส่วนการทำปฏิกิริยานั้นทำปฏิกิริยาที่อุณหภูมิหลายร้อยองศาเซลเซียส แก๊สที่ออกจาก reactor ต่อไปยังระบบเก็บตัวอย่างเพื่อวิเคราะห์ด้วยเครื่อง GC
 
ทีนี้ก็ลองมาดูกันนะครับว่ามีคำถามอะไรบ้าง และผมได้ให้ความเป็นไปอย่างไร

. การนำผงตัวเร่งปฏิกิริยาไปอัดเป็นแผ่นแล้วตัดให้เป็นชิ้นเล็ก ๆ มีผลหรือไม่ต่อผลการทดลอง

ตัวเร่งปฏิกิริยาวิวิธัพันธ์ที่เป็นของแข็งที่เตรียมกันในระดับห้องปฏิบัติการนั้นมักจะมาในรูปของผงละเอียด ถ้าเป็นการทดลองกับปฏิกิริยาในเฟสของเหลว ก็มักจะใช้ในรูปที่เป็นผงนั้นเลย แต่ถ้าเป็นการทดลองกับปฏิกิริยาในเฟสแก๊สใน fixed-bed ก็เห็นมีการทำกันอยู่ ๒ รูปแบบคือ รูปแบบแรกก็ใช้ในรูปที่เป็นผงนั้นเลย และรูปแบบที่สองที่จะนำผงตัวเร่งปฏิกิริยานั้นไปอัดให้เป็นแผ่นก่อน จากนั้นก็ตัดให้เป็นชิ้นเล็ก ๆ (แต่ก็ยังมีขนาดที่ใหญ่กว่าอนุภาคที่เป็นผงแต่ละอนุภาคมาก) นำไปร่อนผ่านตะแกรงเพื่อคัดขนาด แล้วจึงค่อยนำไปใช้ในการทดลอง

คำถามแรกก็คือ ทั้งสองรูปแบบนั้นมันให้ผลที่เหมือนกันหรือแตกต่างกัน ซึ่งจากประสบการณ์ที่ผ่านมานั้นพบว่ามันไม่เหมือนกัน เพราะมันมีเรื่องของการแพร่ (diffusion) เข้ามายุ่ง
 
ตัวเร่งปฏิกิริยาที่เป็นผงละเอียดนั้น ทุกอนุภาคของตัวเร่งปฏิกิริยาจะสัมผัสกับแก๊สที่ไหลผ่าน (convection) ดังนั้นโอกาสที่จะมี external mass transfer resistance จึงต่ำกว่า และถ้าหากผงตัวเร่งปฏิกิริยามีขนาดเล็กลงจนถึงระดับหนึ่งแล้ว ปัญหาเรื่อง internal mass transfer resistance ก็จะหมดไปด้วย ดังนั้นถ้าการทดลองนั้นต้องการวัดอัตราการเกิดปฏิกิริยาที่แท้จริง ซึ่งอัตราการหายไปของสารตั้งต้นนั้นต้องไม่ถูกจำกัดด้วยอัตราเร็วในการแพร่ การใช้ตัวเร่งปฏิกิริยาในรูปแบบที่เป็นผงละเอียดจะให้ผลที่ถูกต้องมากกว่า
 
การนำเอาผงตัวเร่งปฏิกิริยาไปอัดให้เป็นแผ่นแล้วตัดให้เป็นชิ้นเล็ก ๆ นั้นจะมีเฉพาะผงอนุภาคที่อยู่บนพื้นผิวชิ้นตัวเร่งปฏิกิริยาแต่ละชิ้นเท่านั้นที่ได้สัมผัสกับสารตั้งต้นในเฟสแก๊สแบบไม่มี external mass transfer resistance ส่วนผงอนุภาคตัวเร่งปฏิกิริยาที่อยู่ข้างในชิ้นอนุภาคตัวเร่งปฏิกิริยานั้น จะได้รับเฉพาะสารตั้งต้นที่แพร่ผ่านช่องว่างระหว่างอนุภาคตัวเร่งปฏิกิริยาแต่ละอนุภาคที่แพร่เข้าไปถึงเท่านั้น และถ้าเป็นกรณีของปฏิกิริยาคายความร้อนด้วย โอกาสที่สารตั้งต้นจะแพร่เข้าไปถึงผงอนุภาคตัวเร่งปฏิกิริยาที่อยู่บริเวณตอนกลางของชิ้นตัวเร่งปฏิกิริยาแต่ละชิ้นจะน้อยลงไปอีก (คำอธิบายตรงนี้มันอยู่ในเรื่อง effectiveness factor หรือค่า )
 
เมื่อกว่า ๒๐ ปีที่แล้วเคยมีนิสิตปริญญาเอกคนหนึ่งมาถามผมด้วยคำถามเดียวกันนี้ (ตอนนี้ดูเหมือนเขาจะเป็นผู้มีตำแหน่งใหญ่โตในสายงานวิจัยของบริษัทยักษ์ใหญ่ชั้นแนวหน้าของไทยบริษัทหนึ่ง) ผมก็ถามเขากลับไปว่าผมก็แปลกใจเหมือนกันว่าทำไมคุณต้องทำแบบนั้น คุยกันไปคุยกันมาก็เลยรู้ว่าที่กลุ่มของเขาทำแบบนั้นเพราะไปลอกวิธีการจากแลปที่ญี่ปุ่นที่อาจารย์ที่ปรึกษาไปเห็นมา (คือเห็นเขาทำอย่างนั้นก็เลยทำตามโดยไม่คิดอะไร) และพอมีรุ่นพี่เคยใช้วิธีการนี้ (คืออัดให้เป็นแผ่นก่อนแล้วค่อยตัดเป็นชิ้นเล็ก ๆ) รุ่นน้องต่อ ๆ มาก็เลยต้องทำแบบเดียวกัน ด้วยเกรงว่าจะไม่สามารถนำผลการทดลองมาเปรียบเทียบกันได้ และมันก็เป็นอย่างนั้นจริง เพราะเมื่อเขาทดลองใช้ตัวเร่งปฏิกิริยาในรูปแบบที่เป็นผงละเอียดตามที่ผมแนะนำ และใช้ในปริมาณที่น้อยกว่าด้วย กลับได้ค่า conversion สูงกว่าเมื่อใช้ในรูปแบบที่เป็นชิ้นเล็ก ๆ
 
ตรงจุดนี้ผมก็ได้บอกเขาไปว่าคุณคงต้องเลือกเอาระหว่าง การยอมเสียเวลานำตัวเร่งปฏิกิริยาของรุ่นพี่มาทำการทดลองใหม่ในรูปแบบที่เป็นผงละเอียด เพื่อที่คุณจะได้ไม่ต้องเสียเวลากับการนำผงตัวเร่งปฏิกิริยาที่เตรียมได้นั้นมาอัดเป็นแผ่น ตัดเป็นชิ้นเล็ก และนำมาค่อนเพื่อคัดขนาด หรือจะไม่ไปยุ่งอะไรกับผลการทดลองของรุ่นพี่ โดยมายอมเสียเวลานำผงตัวเร่งปฏิกิริยาที่เตรียมได้นั้นมาอัดเป็นแผ่น ตัดเป็นชิ้นเล็ก แล้วนำมาร่อน สำหรับทุกตัวเร่งปฏิกิริยาที่เตรียมขึ้นใหม่ ซึ่งมันจะเป็นวิธีการที่รุ่นน้องต้องทำสืบเนื่องต่อไปเรื่อย ๆ โดยไม่รู้ว่าจะไปสิ้นสุดเมื่อใด ซึ่งสิ่งที่เขาเลือกก็คือ .... (เชิญเดาเอาเองครับ)
 
ส่วนตัวผมเองนั้น ผมไม่เคยให้นิสิตนำผงตัวเร่งปฏิกิริยาที่เตรียมได้มาขึ้นรูปให้เป็นชิ้นเล็ก (เพราะไม่มีความจำเป็นใด ๆ ที่ต้องทำเช่นนั้น)
 
แต่การใช้ตัวเร่งปฏิกิริยาในรูปของผงละเอียดก็ใช่ว่าไม่มีปัญหานะ ตรงนี้มันมีหลายประเด็นที่ต้องคำนึงอยู่เหมือนกัน อย่างแรกก็คือถ้าหากในรูปแบบที่เป็นผงนั้นมันฟุ้งกระจายได้ง่าย การใช้งานมันก็จะยาก เพราะเมื่อเราชั่งน้ำหนักที่แน่นอนของมันก่อนบรรจุ reactor มันอาจเกิดการฟุ้งหายไปบางส่วนในขณะบรรจุได้ ทำให้น้ำหนักจริงที่ใส่ reactor นั้นน้อยกว่าที่ชั่งได้ และก็บอกไม่ได้ด้วยว่ามันหายไปเท่าใด ผมเองก็เคยเจอปัญหานี้กับ support บางตัว (TiO2 P25) แต่แก้ปัญหาด้วยการพรมน้ำให้มันชื้นก่อน จากนั้นนำไปอบให้แห้งและค่อยนำมาบดใหม่ ความเป็นฝุ่นฟุ้งกระจายง่ายมันก็หายไป
 
เนื่องด้วยตัวเร่งปฏิกิริยาในรูปของผงละเอียดนั้นไม่มีปัญหาเรื่องการแพร่เข้าถึงอนุภาคตัวเร่งปฏิกิริยาแต่ละอนุภาค ดังนั้นถ้าใช้น้ำหนักตัวเร่งปฏิกิริยาในการทดลองเท่ากัน การใช้ในรูปที่เป็นผงนั้นจะให้ค่า conversion ที่สูงกว่าเมื่อเทียบกับการใช้เป็นชิ้นเล็ก แต่ด้วยการที่มันเป็นผงละเอียดก็จะทำให้ค่า pressure drop คร่อมเบดตัวเร่งปฏิกิริยาสูงตามไปด้วย ซึ่งปัญหาตรงนี้แก้ได้ด้วยการลดปริมาณที่ใช้ ซึ่งเป็นทั้งลด pressure drop คร่อมเบด การประหยัดปริมาณตัวเร่งปฏิกิริยาในแต่ละการทดลอง โดยที่ยังคงรักษาระดับ conversion ที่สูงเอาไว้ได้
 
ปัญหาสำคัญอีกปัญหาหนึ่งที่มักถูกมองข้ามไปในการทำการทดลองด้วย fixed-bed ก็คือ การเกิด channelling ซึ่งหมายถึงการที่แก๊สจำนวนหนึ่งไหลผ่านบริเวณขอบผนังไปโดยไม่ไหลเข้าไปบริเวณตอนกลางของเบด
 
ใน fixed-bed นั้นบริเวณผนังจะมี void fraction สูงกว่าบริเวณตอนกลางเบด ดังนั้นถ้าวัดความเร็วของแก๊สที่ไหลผ่านเบดที่ตำแหน่งแนวรัศมีต่าง ๆ กันนั้นจะพบว่าบริเวณใกล้ผนังแก๊สจะไหลผ่านเร็วสุด ความแตกต่างนี้จะเด่นชัดมากขึ้นถ้าหากอนุภาคของแข็งนั้นมีขนาดใหญ่เมื่อเทียบกับขนาดเส้นผ่านศูนย์กลางของเบด และ/หรือเบดมีความสูงไม่มากเมื่อเทียบกับขนาดอนุภาคของแข็งที่บรรจุอยู่ ดังนั้นเพื่อหลีกเลี่ยงปัญหาเรื่อง channelling นี้ ขนาดเส้นผ่านศูนย์กลางของ reactor ต่อขนาดอนุภาคควรมีค่าไม่ต่ำกว่า 10 และถ้ามีสัดส่วนที่มากกว่านี้ก็จะทำให้ velocity profile ของการไหลผ่าน fixed-bed เข้าใกล้กับ plug flow มากขึ้น

. ควรใช้ตัวเร่งปฏิกิริยาเท่าไรดี

คำตอบของคำถามนี้ก็คือใช้ในปริมาณที่ทำให้การวัดค่า conversion นั้นไม่น้อยเกินไปและไม่สูงเกินไป ซึ่งตรงนี้คงต้องทำการทดลองหาเอาเอง เพราะถ้าใช้น้อยจนกระทั่งทำให้ได้ค่า conversion ต่ำ พอนำตัวเร่งปฏิกิริยาที่มีความว่องไวต่ำกว่ามาทำการทดลอง ก็จะมองเห็นความแตกต่างไม่ชัดเจน (บอกไม่ได้ว่าเกิดจากความคลาดเคลื่อนของการทดลองหรือไม่) แต่ถ้าใช้มากเกินไปจนทำให้ได้ค่า converison ที่ระดับ 100% ก็จะบอกไม่ได้ว่าใช้ตัวเร่งปฏิกิริยามากเกินจำเป็นไปเท่าใด คือตัวเร่งปฏิกิริยาไม่ว่าจะว่องไวมากหรือน้อย ถ้าใส่มากถึงระดับหนึ่งมันก็จะได้ค่า conversion 100% เหมือนกันหมด 
  
เช่นเพื่อให้ได้ conversion 100% ต้องใช้ตัวเร่งปฏิกิริยา A 0.2 g ตัวเร่งปฏิกิริยา B 0.3 g และตัวเร่งปฏิกิริยา C 0.4 g แต่ถ้าในการทดลองนั้นเราใช้ตัวเร่งปฏิกิริยาชนิดละ 0.5 g เราก็จะเห็นค่า conversion ที่ได้เป็น 100% กับทุกตัวเร่งปฏิกิริยา ในกรณีเช่นนี้ควรใช้ตัวเร่งปฏิกิริยาในการทดลองน้อยกว่า 0.2 g เพื่อให้เห็นว่าค่า conversion ที่ได้จากตัวเร่งปฏิกิริยา A นั้นยังต่ำกว่า 100% จะได้มั่นใจได้ว่าไม่ได้ใส่ตัวเร่งปฏิกิริยา A มากเกินจำเป็น

. ทำไมเมื่อวัดผ่าน bypass แล้วอัตราการไหลลดลง

ตรงนี้ต้องขอให้พิจารณารูปที่ ๑ คำถามที่เขาถามผมมาก็คือ ก่อนเริ่มทำการทดลองนั้นวัดอัตราการไหลของแก๊ส A โดยใช้เส้นทาง bypass ได้ค่า ๆ หนึ่ง พอวันถัดมาเมื่อสิ้นสุดการทดลองก็วัดอัตราการไหลของแก๊ส A ซ้ำ กลับพบว่ามันลดลงไปประมาณ 10% ในเมื่อความดันด้านขาเข้าวาล์วปรับอัตราการไหล (P0) นั้นคงที่ และก็ไม่มีใครไปยุ่งอะไรกับวาล์วปรับอัตราการไหล
 
การวัดอัตราการไหลของเขานั้นใช้ bubble flow meter ที่เป็นการวัดที่อุณหภูมิห้องและความดันบรรยากาศ ดังนั้นถ้าอุณหภูมิของระบบท่อที่เป็นเส้นทางการไหลนั้นประมาณได้ว่าเปลี่ยนแปลงไม่มาก และท่อก็ไม่ได้มีขนาดเล็กมาก การเปลี่ยนแปลงถึงระดับ 10% นี่ก็เป็นเรื่องแปลก ซึ่งผมก็นึกไม่ออกเหมือนกันว่าเป็นเพราะอะไร จริงอยู่แม้ว่าจะเป็นการวัดที่ความดันบรรยากาศ แต่ถ้าเส้นทางการไหลของแก๊สมีขนาดเล็กและก่อนมาถึง bubble flow meter นั้นมีอุณหภูมิสูงขึ้น มันก็เป็นไปได้ที่จะเห็นแก๊สไหลช้าลง แต่ในระบบที่เขาเล่าให้ผมฟังนั้นคิดว่าไม่น่าเป็นเช่นนี้
 
ประเด็นหนึ่งที่ผมสงสัยคือการวัดด้วย bubble flow meter ท่อแก้วของ bubble flow meter ที่เขาใช้นั้นมีขนาดเส้นผ่านศูนย์กลางประมาณ 8 mm ซึ่งถ้าเป็นการวัดอัตราการไหลที่สูงก็ไม่มีปัญหาอะไร แต่ถ้าเป็นการวัดอัตราการไหลที่ต่ำจะมีความคลาดเคลื่อนได้สูง เพราะระยะเวลาที่ฟองสบู่จะเคลื่อนที่ผ่านเส้นขีดบอกปริมาตรที่เล็งอยู่นั้นค่อนข้างจะมาก ทำให้เกิดความคลาดเคลื่อนในการจับเวลาได้มาก (ขึ้นอยู่กับคนเล็งแต่ละคนว่าเล็งตรงตำแหน่งไหนของเส้นขีดบอกปริมาตร) สิ่งที่ผมแนะนำให้เขาทดลองทำก็คือลองเอา graduated pipette ขนาดไม่เกิน 10 ml มาเป็นตัววัดปริมาตรของแก๊สที่ไหลออกมา เพราะปิเปตที่มีขนาดเล็กจะทำให้เห็นฟองสบู่เคลื่อนที่ได้เร็วขึ้น ความคลาดเคลื่อนจากการจับเวลาเมื่อฟองสบู่เคลื่อนถึงขีดบอกปริมาตรที่กำหนดไว้ก็จะลดลงไปด้วย

. ทำไมแก๊สหายไปเมื่ออุณหภูมิสูงขึ้น

อันนี้เป็นปัญหาที่หลายรายไม่รู้ว่ามันเกิดขึ้น เพราะตอนที่ปรับอัตรการไหลนั้นกระทำที่อุณหภูมิห้อง และในช่วงแรกที่อุณหภูมิเบดสูงขึ้นก็ไม่เห็นจะมีปัญหาอะไร ก็เลยคิดว่ามันไม่มีปัญหาอะไร แต่ถ้าทดลองวัดอัตราการไหลผ่านเบดที่อุณหภูมิสูง หรือวัดความเข้มข้นของสารตั้งต้นที่ไหลผ่านเบดที่อุณหภูมิสูง (โดยใช้ inert material บรรจุแทนตัวเร่งปฏิกิริยา) ก็มีสิทธิ์ที่จะเห็นสารตั้งต้นบางตัวหายไป ทั้ง ๆ ที่มันไม่มีปฏิกิริยาใด ๆ เกิดขึ้น
 
ปัญหานี้มักจะเกิดกับผู้ที่ใช้แก๊สหลายตัวมาผสมกันในระบบท่อก่อนผ่านแก๊สผสมไปยังเบดตัวเร่งปฏิกิริยา ปัญหามันอยู่ตรงที่การต่อท่อแก๊สสองตัวเข้าด้วยกัน คือถ้าต่อถูกวิธีมันจะไม่มีปัญหาใด ๆ แต่ถ้าต่อไม่ถูกวิธีมันมีโอกาสที่จะเกิดปัญหาได้ โดยเฉพาะเมื่อแก๊สตัวหนึ่งมีอัตราการไหลที่สูงกว่าอีกตัวหนึ่งมาก อย่างเช่นในกรณีที่เขาถามผมมา แก๊ส A ที่มีอัตราการไหลเพียงแค่ประมาณ 10% ของแก๊ส B นั้นหายไปเมื่ออุณหภูมิของเบดเพิ่มสูงขึ้น (จากการวัดด้วย GC) สิ่งที่ผมถามเขาก็คือเขาต่อท่อแก๊สให้ผสมกันแบบไหน คำตอบที่ได้ก็คือใช้ข้อต่อ ๓ ทาง (Tee) โดยให้แก๊ส A และ B เข้าทางด้านตรงข้ามกัน และให้แก๊สผสมไหลออกตรงกลางดังแสดงในรูปที่ ๑
 
การต่อแบบนั้นถ้าเป็นกรณีที่แก๊สทั้งสองสายนั้นมีอัตราการไหลที่สูงพอ ๆ กันก็อาจจะไม่เห็นปัญหาใด ๆ แต่ถ้าแก๊สตัวหนึ่งไหลต่ำกว่าอีกตัวหนึ่งมาก มีโอกาสสูงที่จะพบว่าแก๊สที่มีอัตราการไหลต่ำนั้นจะหายไปเมื่ออุณหภูมิเบดเพิ่มสูงขึ้น ทั้งนี้เป็นเพราะความต้านทางการไหลด้าน downstream เพิ่มขึ้น วิธีการที่ดีกว่าคือการให้แก๊สที่มีอัตราการไหลสูงนั้นไหลในแนวตรงของข้อต่อ และให้แก๊สที่มีอัตราการไหลต่ำเข้าบรรจบทางด้านข้าง เรื่องนี้เคยอธิบายไว้อย่างละเอียดใน Memoir ปีที่ ๓ ฉบับที่ ๒๗๕ วันพุธที่ ๒๓ มีนาคม ๒๕๕๔ เรื่อง "การใช้ข้อต่อสามทางผสมแก๊ส"
 
แก๊สมันไม่เหมือนของเหลวตรงที่แก๊สสามารถอัดตัวได้ ดังนั้นถ้าความต้านทางด้าน downstream (P1) เพิ่มสูงขึ้น แต่ยังต่ำกว่าความดันทางด้าน upstream (P0) แก๊สก็ยังไหลผ่านวาล์วได้อยู่ แต่จะไปสะสมตรงในเส้นท่อก่อนจะถึงจุดผสม การแก้ปัญหานั้นนอกจากการปรับแนวท่อใหม่ (ซึ่งเป็นสิ่งที่ควรต้องทำ) ก็อาจใช้การเพิ่มความดันด้านขาเข้าวาล์วปรับอัตราการไหลให้สูงขึ้น แต่ก็ต้องแลกด้วยการเปิดวาล์วนั้นให้น้อยลง ซึ่งถ้าพบว่าต้องเปิดวาล์วน้อยมาก แสดงว่าวาล์วที่ใช้นั้นมีขนาดใหญ่เกินไป ควรพิจารณาเปลี่ยนไปใช้วาล์วที่มีขนาดเล็กลง แต่ก็ต้องไม่เล็กจนกระทั่งต้องเปิดวาล์วเกือบสุดจึงจะได้อัตราการไหลที่ต้องการ
 
สำหรับวันนี้ก็คงจะขอสรุปจบเพียงแค่นี้

วันพฤหัสบดีที่ 3 พฤษภาคม พ.ศ. 2561

การเตรียม Supported metal catalyst ก่อนใช้งานและ ก่อนนำออกจาก fixed-bed reactor MO Memoir : Thursday 3 May 2561

เวลาที่จะเล่นกับปฏิกิริยาคายความร้อน (exothermic reaction) สิ่งสำคัญที่ต้องคำนึงถึงในการทำปฏิกิริยาก็คือ ปริมาณความร้อนที่คายออกมา (heat of reaction) และอัตราการเกิดปฏิกิริยา (rate of reaction)
 
ปริมาณความร้อนที่คายออกมาสามารถคำนวณได้จากความรู้ทางด้านเทอร์เมอร์ไดนามิก โดยอาศัยการคำนวณค่าการเปลี่ยนแปลงเอนทาลปี (enthalpy) ของปฏิกิริยา สารเคมีที่ใช้กันทั่วไปในภาคอุตสาหกรรมนั้น (ที่ไม่ได้มีโครงสร้างโมเลกุลซับซ้อนอะไร) จะมีค่าเอนทาลปีของการเกิด (enthalpy of formation) ให้อยู่แล้ว หรือไม่ก็พอจะประมาณได้จากลักษณะโครงสร้างของโมเลกุล ดังนั้นการหาค่าปริมาณความร้อนที่ปฏิกิริยาจะคายออกมานั้นไม่ค่อยจะมีปัญหาเท่าไรนัก
รูปที่ ๑ ตัวอย่างการบรรจุตัวเร่งปฏิกิริยาลงใน fixed-bed reactor ที่มีชั้นของ supported ball รองอยู่ข้างล่างและปิดทับชั้นบน เป็นกรณีที่แก๊สไหลจากบนลงล่าง (รูปนี้นำมาจากเอกสาร "Loading, Start-up and Regeneration Procedures for BASF PuriStar® R 3-17RED" ของบริษัท BASF
 
อัตราการเกิดปฏิกิริยาเป็นตัวบอกว่าจะมีความร้อนปลดปล่อยออกมาจากปฏิกิริยารวดเร็วแค่ไหน และในเรื่องของความปลอดภัยแล้ว อัตราการปลดปล่อยพลังงานสำคัญมากกว่าปริมาณพลังงานที่คายออก เพราะพลังงานความร้อนที่ปฏิกิริยาคายออกมานั้นจะเร่งให้ปฏิกิริยาเกิดเร็วขึ้นไปอีก และถ้าอัตราการปลดปล่อยพลังงานนั้นรวดเร็วมากจนไม่สามารถควบคุมได้ ก็สามารถนำไปสู่การระเบิดได้ 
  
ตัวอย่างเช่นถ้าเทียบกันต่อหน่วยน้ำหนักแล้ว การเผาไหม้โทลูอีน (C6H5-CH3 toluene) จะให้พลังงานมากกว่าการเผาไหม้ไตรไนโตรโทลูอีน (C6H2CH3(NO2)3 trinitrotoluene หรือที่ย่อว่า TNT) ถึง 3 เท่า แต่เราสามารถกระตุ้นให้ไตรไนโตรโทลูอีนปลดปล่อยพลังงานในตัวมันออกมาเป็นจำนวนมากได้ในเวลาที่สั้นมาก เราจึงสามารถใช้ไตรไนโตรโทลูอีนเป็นวัตถุระเบิดได้ หรือในกรณีของโลหะอะลูมิเนียมที่ทำปฏิกิริยากับออกซิเจนในอากาศได้ง่ายนั้น ในรูปที่เป็นแผ่นหรือชิ้นงานขนาดใหญ่จะสัมผัสกับอากาศได้อย่างปลอดภัย แต่ถ้าเป็นในรูปของโลหะที่เป็นผง (พื้นที่ผิวสัมผัสกับอากาศเพิ่มขึ้นมาก) สามารถทำปฏิกิริยากับออกซิเจนในอากาศอย่างรุนแรงจนเกิดการระเบิดได้ 
  
(ตรงนี้ขอย้ำนิดนึง ยังมีคนจำนวนไม่น้อยสับสนระหว่างเรื่องสมดุลเคมีกับอัตราการเกิดปฏิกิริยา กล่าวคือเมื่ออุณหภูมิสูงขึ้น อัตราการเกิดปฏิกิริยาจะรวดเร็วขึ้น โดยไม่ขึ้นอยู่กับว่าปฏิกิริยานั้นเป็นปฏิกิริยาคายความร้อนหรือดูดความร้อน ส่วนปฏิกิริยาที่ถูกควบคุมไว้ด้วยค่าคงที่สมดุลนั้น การเพิ่มอุณหภูมิจะทำให้ปฏิกิริยาจะดำเนินไปข้างหน้าได้มากน้อยเท่าไรนั้นขึ้นอยู่กับว่าปฏิกิริยานั้นเป็นปฏิกิริยาดูดความร้อนหรือคายความร้อน เพียงแต่การเพิ่มอุณหภูมินั้นจะไปเร่งให้ทั้งปฏิกิริยาไปข้างหน้าและย้อนกลับรวดเร็วมากขึ้นเท่านั้นเอง)


รูปที่ ๒ เป็นรูปที่ต่อเนื่องจากรูปที่ ๑ เป็นตัวอย่างการจัดวางชั้น ceramic ball ที่รองด้านล่างของเบดและปิดทับด้านบน
 
สิ่งหนึ่งที่คนที่ทำวิจัยเกี่ยวกับตัวเร่งปฏิกิริยาโลหะบนตัวรองรับ (supported metal catalyst) ที่ใช้ในเบดนิ่ง (fixed-bed หรือ packed-bed) ทำกันเป็นเรื่องปรกติก็คือ จะเตรียมตัวเร่งปฏิกิริยาเก็บเอาไว้ในรูป "โลหะออกไซด์" เวลาจะใช้ในการทดลองก็จะนำเอาตัวเร่งปฏิกิริยาในรูปโลหะออกไซด์นั้นบรรจุลงใน reactor (ปรกติก็เป็นขั้นตอนที่กระทำในอากาศทั่วไป ไม่ได้อยู่ภายใต้บรรยากาศพิเศษอะไร) จากนั้นจึงทำการ "รีดิวซ์" (ส่วนใหญ่ก็จะใช้แก๊สไฮโดรเจน) เพื่อเปลี่ยนรูปจากออกไซด์ให้กลายเป็น "โลหะ" (คือมีเลขออกซิเดชันเป็นศูนย์) ก่อนที่จะป้อนสารตั้งต้นเพื่อการทำปฏิกิริยาเข้าไป
 
การที่ต้องทำเช่นนี้ก็เพราะอนุภาคโลหะที่กระจายตัวอยู่บนตัวรองรับ (หรือบางค่ายเรียกตัวพยุงที่ภาษาอังกฤษใช้คำว่า support หรือ catalyst support) มีพื้นที่ผิวสัมผัสกับอากาศที่สูงมาก อนุภาคโลหะจะทำปฏิกิริยากับออกซิเจนในอากาศได้อย่างรวดเร็วและคายพลังงานความร้อนออกมามาก ดังนั้นเพื่อให้มีความปลอดภัยในการเก็บและสะดวกในการนำไปใช้งาน จึงมักจะเตรียมเอาไว้ในรูปสารประกอบโลหะออกไซด์ก่อน พอจะใช้งานก็ค่อยไปทำการรีดิวซ์ก่อนเริ่มทำปฏิกิริยา
 
แต่พอเสร็จการทดลองแล้ว ตอนรื้อตัวเร่งปฏิกิริยาออกมาก็เห็นรื้อกันออกมาแบบปรกติ ไม่จำเป็นต้องมีการออกซิไดซ์ให้กลับเป็นโลหะออกไซด์ก่อนรื้อ ทั้งนี้คงเป็นเพราะปริมาณตัวเร่งปฏิกิริยาที่ใช้ในการทดลองนั้นมันน้อยมากเมื่อเทียบกับขนาดของระบบ ก็เลยไม่รู้สึกถึงความร้อนที่คายออกมาเมื่อตัวเร่งปฏิกิริยาทำปฏิกิริยากับออกซิเจนในอากาศ


รูปที่ ๓ ตัวอย่างการบรรจุตัวเร่งปฏิกิริยาลงใน fixed-bed reactor ที่มีชั้น bubble cap tray ช่วยกระจายของเหลวให้ไหลทั่วถึงหน้าตัดเบดอยู่ทางด้านบน (รูปนี้นำมาจากเอกสาร Manual for Topsoe Hydroprocessing Catalysts ของบริษัท HALDOR TOPSOE กรณีนี้เป็นเครื่องปฏิกรณ์เบดนิ่งชนิด 3 เฟส (ที่เรียกว่า trickle bed reactor) ที่มีของเหลวไหลลงจากทางด้านบนและแก๊สไหลขึ้นสวนทางจากทางด้านล่าง)
 
การทำงานเกี่ยวกับการบรรจุหรือรื้อตัวเร่งปฏิกิริยาชนิดโลหะบนตัวรองรับ (supported metal catalyst) ที่ใช้กันในภาคอุตสาหกรรมก็ต้องคำนึงเรื่องการสัมผัสกับอากาศเช่นกัน เพียงแต่ในระดับอุตสาหกรรมนั้นเกี่ยวข้องกับตัวเร่งปฏิกิริยาในปริมาณที่มากกว่าในการบรรจุหรือรื้อออกแต่ละครั้ง และระยะเวลาที่ต้องใช้ในการบรรจุหรือรื้อออกก็สำคัญด้วย 
  
รูปแบบการทำงานที่พื้นฐานที่สุดและเรียบง่ายที่สุดก็คือทำการบรรจุตัวเร่งปฏิกิริยาในรูปที่เป็นโลหะออกไซด์เข้าไปใน reactor ก่อน จากนั้นจึงค่อยใช้แก๊สไฮโดรเจน (ที่เจือจางกับแก๊สอื่นเช่นไนโตรเจน) ทำการรีดิวซ์ตัวโลหะออกไซด์ให้กลายเป็นโลหะก่อนเริ่มการใช้งาน (ช่วงนี้จะมีไอน้ำเกิดขึ้นเพราะไฮโดรเจนจะไปดึงออกซิเจนออกในรูปของไอน้ำ) และเมื่อสิ้นสุดอายุการใช้งานและต้องการนำออก ก็จะทำการผสมออกซิเจนเข้ากับแก๊สเฉื่อยในปริมาณเล็กน้อยให้ไหลผ่านเบดตัวเร่งปฏิกิริยา เพื่อทำการออกซิไดซ์โลหะให้กลายเป็นโลหะออกไซด์ (แต่ต้องไม่ลืมที่ต้องไล่สารอื่นอาจตกค้างจากกระบวนการผลิตออกไปก่อน) ในระหว่างกระบวนการออกซิไดซ์นี้ต้องคอยสังเกตอุณหภูมิภายในเบดด้วยว่าไม่สูงเกินไป เมื่อพบอุณหภูมิภายในเบดมีแนวโน้มที่จะลดต่ำลงก็อาจทำการเพิ่มความเข้มข้นออกซิเจนได้ เพื่อที่จะทำให้การออกซิไดซ์โลหะให้กลายเป็นโลหะออกไซด์นั้นเกิดได้อย่างสมบูรณ์ เมื่อเสร็จสิ้นขั้นตอนการออกซิไดซ์แล้ว ตัวเร่งปฏิกิริยาดังกล่าวก็จะสัมผัสกับอากาศได้อย่างปลอดภัย (ไม่ต้องกลัวว่าจะเกิดไฟลุกหรือความร้อนสูงเมื่อสัมผัสกับอากาศ)
 
ดังนั้นเวลาที่ออกแบบกระบวนการ จึงต้องคำนึงถึงการจัดให้มีระบบสาธารณูปโภคที่ต้องใช้ในการเตรียมตัวเร่งปฏิกิริยาก่อนการใช้งาน และทำลายตัวเร่งปฏิกิริยาหลังสิ้นสุดการใช้งานด้วย
 
แต่สำหรับเบดขนาดใหญ่แล้ว การทำงานตามขั้นตอนที่กล่าวมานั้นจะเสียเวลามาก (ระดับเป็นวัน) จึงได้มีความพยายามที่จะลดเวลาทำงานดังกล่าวลง และวิธีการหนึ่งที่ใช้กันก็คือทำให้เฉพาะส่วนที่เป็น "พื้นผิว" ของอนุภาคโลหะ (ที่อยู่บนตัวรองรับ) นั้นมีความเฉื่อยหรือไม่สามารถสัมผัสกับออกซิเจนได้ง่าย ที่เรียกว่าการทำ "passivation"


รูปที่ ๔ ข้อความนี้นำมาจากคู่มือการบรรจุตัวเร่งปฏิกิริยา PuriStar® R 3-17RED ของบริษัท BASF ที่ใช้ในการกำจัด CO ออกจากโพรพิลีน (เอกสารเดียวกับรูปที่ ๑) ย่อหน้าข้างบนกล่าวไว้ว่าตัวเร่งปฏิกิริยาดังกล่าวได้รับการทำ passivation ไว้บางส่วน ทำให้สามารถสัมผัสกับอากาศที่อุณหภูมิห้องได้เป็นเวลาสั้น ๆ (น้อยกว่า 1 ชั่วโมง) การเตรียมตัวเร่งปฏิกิริยารูปแบบนี้ทำให้ลดเวลาที่ต้องใช้ในการปรับสภาพตัวเร่งปฏิกิริยาก่อนใช้งาน แต่ก็มีความยุ่งยากและข้อควรระวังมากขึ้นในการบรรจุตัวเร่งปฏิกิริยาเข้าไปใน reactor คือต้องกันให้ตัวเร่งปฏิกิริยามีโอกาสสัมผัสกับอากาศน้อยที่สุด

กล่าวคือบริษัทที่ผลิตตัวเร่งปฏิกิริยาจำหน่ายนั้นจะทำการ passivation พื้นผิวตัวเร่งปฏิกิริยาเอาไว้ เช่นอาจทำการออกซิไดซ์ให้ผลึกโลหะกลายเป็นสารประกอบโลหะออกไซด์เพียงแค่บางส่วนหรือเฉพาะพื้นผิว แทนที่จะเป็นทั้งผลึก ทั้งนี้เพื่อลดความว่องไวในการทำปฏิกิริยากับออกซิเจนในอากาศ แล้วบรรจุส่งมาในภาชนะที่ปิดสนิท การทำเช่นนี้ทำให้สามารถลดเวลาที่ต้องใช้ในการรีดิวซ์ผลึกโลหะออกไซด์ให้กลายเป็นผลึกโลหะ แต่นั่นหมายถึงในขั้นตอนการบรรจุนั้นต้องใช้ความระมัดระวังเพิ่มมากขึ้น คือต้องป้องกันให้ตัวเร่งปฏิกิริยามีโอกาสสัมผัสกับอากาศน้อยที่สุด (เช่นอาจทำการบรรจุในขณะที่ภายใน reactor มีแต่แก๊สเฉื่อย แต่ก็ต้องคำนึงถึงอันตรายที่อาจเกิดขึ้นจากการขาดอากาศด้วย)
 
และเวลาที่จะนำเอาตัวเร่งปฏิกิริยาโลหะที่เสื่อมสภาพในการทำปฏิกิริยาออกจาก reactor ก็ต้องหาทางป้องกันไม่ให้โลหะนั้นสัมผัสกับออกซิเจนในปริมาณมากเช่นกัน และวิธีการหนึ่งที่ทำได้ก็คือการเติมน้ำเข้าไป อย่างเช่นข้อความในรูปที่ ๕ ข้างล่างนั้นกล่าวถึงการเติมน้ำให้ท่วมเบดตัวเร่งปฏิกิริยา ก่อนที่จะถ่ายตัวเร่งปฏิกิริยา (แน่นอนว่ามีน้ำที่เติมเข้าไปไหลออกมาด้วย) ออกทางด้านล่างของ reactor แล้วลงสู่ถังรองรับเลย โดยที่ตัวเร่งปฏิกิริยาที่อยู่ในถังรองรับนั้นก็ต้องอยู่ใต้ผิวน้ำด้วย


รูปที่ ๕ ข้อความนี้นำมาจากคู่มือการบรรจุตัวเร่งปฏิกิริยา PuriStar® R 3-17RED ของบริษัท BASF ที่ใช้ในการกำจัด CO ออกจากโพรพิลีนเช่นกัน (เอกสารเดียวกับรูปที่ ๑) ย่อหน้าข้างบนกล่าวถึงการทำ passivation ด้วยการเติมน้ำให้ท่วมเบดตัวเร่งปฏิกิริยาโดยใช้น้ำเป็นตัวปิดคลุมผลึกโลหะเอาไว้ไม่ให้สัมผัสกับอากาศ (และยังช่วยในการออกซิไดซ์ผลึกโลหะอย่างช้า ๆ ด้วยการอาศัยออกซิเจนในปริมาณเล็กน้อยที่ละลายอยู่ในน้ำ

ส่วนที่ว่าในทางปฏิบัตินั้นจะใช้วิธีการไหนได้นั้นก็คงต้องพิจารณาเป็นกรณีไป เพราะคงต้องนำเอาโครงสร้างของทั้งตัว vessel เองและการติดตั้งเบดมาประกอบการพิจารณาด้วยว่าสามารถใช้วิธีการใดได้บ้าง สิ่งที่อยากจะชี้ให้เห็นในบันทึกนี้ก็คือตัวเร่งปฏิกิริยาโลหะบนตัวรองรับ (supported metal catalyst) นั้นในรูปที่เป็นโลหะสามารถทำปฏิกิริยากับออกซิเจนได้รวดเร็วและรุนแรง และคายความร้อนออกในปริมาณมาก การทำงานที่เกี่ยวข้องจึงต้องคำนึงถึงอันตรายที่อาจเกิดขึ้นกับการสัมผัสกับอากาศได้

วันอาทิตย์ที่ 29 เมษายน พ.ศ. 2561

การบรรจุตัวเร่งปฏิกิริยาลง Multi tubular fixed-bed reactor MO Memoir : Sunday 29 April 2561

เครื่องปฏิกรณ์ชนิดเบดนิ่ง (fixed-bed หรือ packed-bed) เป็นเครื่องปฏิกรณ์ที่ใช้กันอย่างแพร่หลายในอุตสาหกรรม โดยเฉพาะการทำปฏิกิริยาในเฟสแก๊สที่ใช้ของแข็งเป็นตัวเร่งปฏิกิริยา หรือการใช้ของแข็งเป็นสารดูดซับสิ่งปนเปื้อนออกจากแก๊สหรือของเหลว (เช่น การกำจัดน้ำออกจากตัวทำละลาย การกำจัดไอระเหยสารอินทรีย์ออกจากแก๊ส) จุดเด่นของเครื่องปฏิกรณ์ชนิดนี้อยู่ที่การที่อนุภาคของแข็งที่บรรจุอยู่นั้นไม่มีการเคลื่อนไหว จึงไม่เกิดการกระแทกระหว่างอนุภาคของแข็งด้วยกันหรือกับผนังภาชนะที่บรรจุ ทำให้สามารถใช้งานกับอนุภาคของแข็ง (ซึ่งส่วนใหญ่) ไม่ทนต่อการกระแทกได้ระหว่างกันได้ เพราะจะทำให้ตัวมันเองแตกออกเป็นอนุภาคที่เล็กลง จุดเด่นอีกข้อของเครื่องปฏิกรณ์ชนิดเบดนิ่งก็คือสามารถทำงานได้ในช่วงอัตราการไหลที่กว้าง (เมื่อไหลจากบนลงล่างนะ)

(ประเด็นเรื่องการที่อนุภาคของแข็งกระแทกกันเองหรือกับผนังภาชนะบรรจุแล้วแตกออกเป็นอนุภาคที่เล็กลงได้นี้ (โดยเฉพาะอย่างยิ่งในปฏิกิริยาระหว่างแก๊ส-ตัวเร่งปฏิกิริยาที่เป็นของแข็ง) เป็นสิ่งที่นักทฤษฎีที่ศึกษาการทำปฏิกิริยาในเบดฟลูอิไดซ์ (fluidised-bed) หรือ riser reactor หรือ transport bed reactor มักไม่กล่าวถึง (จะด้วยความไม่รู้หรือด้วยเหตุผลใดก็ตามแต่) ดังนั้นจึงไม่ควรแปลกใจถ้าพบว่าทำไมจึงมีงาน simulation ปฏิกิริยาต่าง ๆ ที่ใช้เบดฟลูอิไดซ์กันมากมาย แต่การนำมาใช้งานจริงมีจำกัดมาก)

ในกรณีของปฏิกิริยาที่มีการเปลี่ยนแปลงพลังงานความร้อนต่ำ ก็มักจะประมาณได้ว่าเครื่องปฏิกรณ์ชนิดเบดนิ่งทำงานในสภาวะที่อุณหภูมิคงที่ (ที่เรียกว่า isothermal) แต่ถ้าการเปลี่ยนแปลงพลังงานความร้อนของปฏิกิริยามีขนาดที่มีนัยสำคัญ ก็มักจะให้เครื่องปฏิกรณ์ชนิดเบดนิ่งทำงานในสภาวะที่ไม่มีการถ่ายเทพลังงานความร้อนกับสิ่งแวดล้อม (หรือที่เรียกว่า adiabatic)

รูปที่ ๑ ในการทำงานแบบ adiabatic ของเครื่องปฏิกรณ์ชนิดเบดนิ่งนั้น ถ้าพบว่าการใช้เบดเดียวไม่สามารถทำให้ได้ค่า conversion ตามต้องการ (จะด้วยอุณหภูมิที่ลดต่ำลงมากจนปฏิกิริยาไม่สามารถดำเนินไปข้างหน้าได้ในกรณีของปฏิกิริยาดูดความร้อน หรือด้วยการที่อุณหภูมิเพิ่มสูงมากเกินไปจนอาจเกิดอันตรายได้ในกรณีของปฏิกิริยาคายความร้อน หรือในกรณีของปฏิกิริยาที่ถูกควบคุมด้วยค่าคงที่สมดุล) ก็จะแยกเบดการทำปฏิกิริยาออกเป็นหลายส่วน โดยมีการติดตั้งเครื่องแลกเปลี่ยนความร้อน ที่อาจใช้เพื่อให้ความร้อนหรือระบายความร้อนให้กับแก๊ส ก่อนที่จะไหลเข้าสู่เบดถัดไป
 
ในกรณีของการทำปฏิกิริยาแบบ adiabatic นั้น ถ้าเป็นปฏิกิริยาดูดความร้อน ก็จะให้ความร้อนแก่สารตั้งต้นก่อนไหลเข้าเบดตัวเร่งปฏิกิริยา เมื่อปฏิกิริยาดำเนินไปข้างหน้าเรื่อย ๆ อุณหภูมิของแก๊สก็จะลดลงไปเรื่อย ๆ จนถึงระดับที่เห็นว่าปฏิกิริยาเกิดช้าเกินไป ก็จะทำการให้ความร้อนแก่แก๊สนั้นใหม่ก่อนที่จะให้ไหลเข้าเบดตัวเร่งปฏิกิริยาที่อยู่ถัดไป ในทางกลับกันถ้าเป็นปฏิกิริยาคายความร้อน เมื่อปฏิกิริยาดำเนินไปข้างหน้ามากขึ้น อุณหภูมิแก๊สในระบบจะเพิ่มสูงขึ้น ซึ่งถ้าปล่อยให้เพิ่มมากเกินไปอาจจะเกิดอันตรายจากการที่ไม่สามารถควบคุมปฏิกิริยาได้ หรือในกรณีของปฏิกิริยาคายความร้อนที่ถูกควบคุมด้วยค่าคงที่สมดุล การที่อุณหภูมิระบบสูงเกินไปก็จะทำให้ปฏิกิริยาไม่สามารถดำเนินไปข้างหน้าได้ ในกรณีเหล่านี้ก็ต้องมีการลดอุณหภูมิแก๊สให้ต่ำลงก่อนที่จะส่งเข้าต่อเบดตัวเร่งปฏิกิริยาที่อยู่ถัดไป (รูปที่ ๑)
 
ในกรณีของปฏิกิริยาคายความร้อนสูงมากนั้น (เช่นพวก partial oxidation ต่าง ๆ) ถ้าให้เบดนิ่งทำงานแบบ adiabatic จะพบว่าอุณหภูมิจะเพิ่มสูงขึ้นอย่างรวดเร็วมากจนไม่เหมาะสมที่จะนำมาใช้งานจริง ในกรณีเช่นนี้ก็จะจัดให้มีการระบายความร้อนออกจากเบดตัวเร่งปฏิกิริยา การทำงานจึงมีรูปแบบที่เรียกว่า non-isothermal non-adiabatic
 
อัตราส่วนพื้นที่ผิวต่อหน่วยปริมาตรทรงกระบอกนั้นแปรผกผันกับขนาดเส้นผ่านศูนย์กลางทรงกระบอกยกกำลัง 2 กล่าวคือถ้าลดขนาดเส้นผ่านศูนย์กลางทรงกระบอกลงเหลือครึ่งหนึ่ง อัตราส่วนพื้นที่ผิวต่อหน่วยปริมาตรจะเพิ่มขึ้น 4 เท่า ด้วยเหตุนี้ในกรณีของเบดนิ่งที่ใช้กับปฏิกิริยาคายความร้อนสูงนั้น จึงจำเป็นที่ต้องใช้เครื่องปฏิกรณ์ (reactor) ที่มีขนาดเส้นผ่านศูนย์กลางที่เล็กลง เพื่อที่จะทำให้การระบายความร้อนจากตัวเบดออกสู่สารหล่อเย็น (coolant) ที่อยู่ภายนอกนั้นได้ดีขึ้น และเพื่อชดเชยพื้นที่หน้าตัดการไหลที่ลดลง จึงจำเป็นต้องมีเบดนิ่งหลายตัวทำงานคู่ขนานกันไปเพื่อที่จะให้ได้กำลังการผลิตตามที่ต้องการ และในปฏิกิริยาเช่นพวก partial oxidation ไฮโดรคาร์บอนไปเป็นสารประกอบ 
oxygenate ต่าง ๆ นั้นพบว่าเพื่อที่จะให้อุณหภูมิในเบดนั้นไม่เพิ่มสูงเกินไป ขนาดเส้นผ่านศูนย์กลางแต่ละเบดนั้นต้องเล็กมาก เช่นในกรณีของการออกซิไดซ์ o-xylene ไปเป็น phthalic anhydride นั้น ขนาดเส้นผ่านศูนย์กลางภายในของแต่ละเบดนั้นกว้างเพียง 25 มิลลิเมตร (แต่ยาวประมาณ 3 เมตร) เรียกว่าใช้ tube มาทำเบดตัวเร่งปฏิกิริยาแทนการใช้ vessel ก็ได้ และเพื่อให้ได้กำลังการผลิตตามต้องการจึงต้องมีจำนวน tube ที่มาก (ในระดับ 10,000 tube ก็ไม่ใช่เรื่องแปลก) ลักษณะของเครื่องปฏิกรณ์ชนิดนี้จึงคล้ายกับเครื่องแลกเปลี่ยนความร้อนชนิด shell and tube ที่วางตั้ง โดยในแต่ละ tube นั้นทำหน้าที่เป็น reactor ที่บรรจุตัวเร่งปฏิกิริยา และมีสารหล่อเย็นนั้นไหลระบายความร้อนอยู่ในส่วน shell ชื่อเรียกของเครื่องปฏิกรณ์ชนิดนี้คือ "Multi tubular fixed-bed reactor"

ปัจจัยเพิ่มเติมที่ส่งผลต่อการระบายความร้อนคืออัตราการไหลของแก๊สที่ไหลผ่านเบดและขนาดอนุภาคตัวเร่งปฏิกิริยา แก๊สที่ไหลผ่านเบดตัวเร่งปฏิกิริยาด้วยความเร็วสูงนั้นจะดึงเอาความร้อนออกจากอนุภาคตัวเร่งปฏิกิริยาได้ดีกว่าเมื่อไหลที่ความเร็วที่ต่ำกว่า และเพื่อที่จะให้แก๊สไหลผ่านด้วยความเร็วที่สูงได้ อนุภาคตัวเร่งปฏิกิริยาจึงต้องมีขนาดใหญ่เพื่อให้เกิดช่วงว่างขนาดใหญ่ภายในเบด นอกจากนี้การที่อนุภาคตัวเร่งปฏิกิริยามีขนาดใหญ่ยังทำให้การระบายความร้อนจากบริเวณตอนกลางของเบดออกมายังผนังด้านในของ tube นั้นดีขึ้นด้วย อย่างเช่นในกรณีของการออกซิไดซ์ o-xylene ไปเป็น phthalic anhydride นั้นที่ใช้ tube ขนาดเส้นผ่านศูนย์กลางภายใน 25 มิลลิเมตร อนุภาคตัวเร่งปฏิกิริยาที่บรรจุอยู่อาจมีขนาดเส้นผ่านศูนย์กลางประมาณ 8 มิลลิเมตร (รูปที่ ๒) โดยที่ตัวเบดสูงประมาณ 2-3 เมตร โดยระยะเวลาที่แก๊สไหลผ่านเบดนั้นสั้นเพียง 0.2-0.3 วินาที (conversion ประมาณ 100%)
 
แม้ว่าอนุภาคตัวเร่งปฏิกิริยาที่บรรจุเข้าไปนั้นจะมีขนาดใหญ่ แต่ส่วนที่เป็นอนุภาคตัวเร่งปฏิกิริยาจริง ๆ นั้นอยู่เพียงแค่ชั้นเคลือบบาง ๆ บนผิวแค่นั้น (รูปที่ ๒) แกนกลางข้างในจะเป็นเซรามิกที่ทำหน้าที่เป็นทั้ง heat sink และช่วยส่งผ่านความร้อน เหตุผลที่ทำชั้นตัวเร่งปฏิกิริยาไว้บางมากก็เพราะปฏิกิริยาเกิดเร็วมาก สารตั้งต้นทำปฏิกิริยาหมดก่อนที่จะสามารถแพร่ซึมลึกเข้าไปข้างในอนุภาคตัวเร่งปฏิกิริยาได้ (ตรงนี้ถ้าใครเคยเรียนเรื่อง effectiveness factor ที่อยู่ในส่วนของ internal mass transfer diffusion มาบ้างแล้วก็คงนึกภาพออก)

รูปที่ ๒ ตัวเร่งปฏิกิริยา V2O5/TiO2 เคลือบบน ceramic carrier ใช้ในปฏิกิริยาการออกซิไดซ์ o-xylene ไปเป็น phthalic anhydride ใน multi tubular fixed-bed reactor ตัวเร่งปฏิกิริยามีขนาดเส้นผ่านศูนย์กลางประมาณ 8 มิลลิเมตร ในขณะที่เส้นผ่านศูนย์กลางภายในของแต่ละ tube ที่บรรจุตัวเร่งปฏิกิริยานั้นมีขนาดเพียง 25 มิลลิเมตร ตัวซ้าย (used) คือตัวเร่งปฏิกิริยาที่ผ่านการใช้งานมานาน ตัวกลาง (F1) และตัวขวา (F3) เป็นตัวเร่งปฏิกิริยาที่ยังไม่ถูกใช้งาน ต่างกันเพียงแค่สูตรส่วนผสม จะเห็นว่าชั้นสารที่เป็นตัวเร่งปฏิกิริยาจริง ๆ นั้นบางมาก (หนาไม่ถึง 1 มิลลิเมตร ที่เห็นหลุดร่อนออกมา)

เพื่อให้เข้าใจความสำคัญของการบรรจุตัวเร่งปฏิกิริยาลงใน "แต่ละ" tube จะขอยกตัวอย่างกรณีของการออกซิไดซ์ o-xylene ไปเป็น phthalic anhydride (เพราะเคยมีโอกาสได้ไปเห็นการบรรจุของจริง) ในกรณีนี้จะทำการระเหยสารตั้งต้นคือ o-xylene ให้ผสมเป็นเนื้อเดียวกับอากาศก่อนที่จะป้อนเข้าเครื่องปฏิกรณ์ ที่ประกอบด้วย tube ขนาดเส้นผ่านศูนย์กลางภายใน 25 มิลลิเมตรจำนวนหลายพัน tube หรือถึงระดับหนึ่งหมื่น tube สิ่งที่ผู้ออกแบบคาดหวังก็คือแก๊สที่ป้อนเข้าไปนั้นต้องมีการกระจายตัวอย่างสม่ำเสมอและไหลผ่านแต่ละ tube ด้วยอัตราการไหลเดียวกัน ทั้งนี้เพราะถ้า tube ไหนมีแก๊สไหลเข้ามากเกินไป ค่า conversion ทางด้านขาออกของ tube นั้นจะต่ำ (เพราะเวลาสัมผัสตัวเร่งปฏิกิริยาสั้นเกินไป) ในทางกลับกันถ้า tube ไหนมีแก๊สไหลผ่านน้อยเกินไป อุณหภูมิภายใน tube นั้นจะสูงมากจนทำให้ตัวเร่งปฏิกิริยาเสียหายได้ และยังทำให้ผลิตภัณฑ์ที่ควรจะได้นั้นถูกออกซิไดซ์ต่อกลายเป็น CO2 ได้
 
ปัจจัยที่ส่งผลต่อการกระจายของแก๊สในการไหลเข้า tube แต่ละ tube ได้แก่รูปแบบท่อป้อนแก๊สผสมตรงทางไหลเข้า reactor และ "ความดันลดคร่อมแต่ละ tube" ในกรณีของรูปแบบท่อป้อนแก๊สเข้า reactor ปรกติก็จะทำการป้อนแก๊สเข้าตรงกลาง reactor เหนือชั้น tube โดยคาดหวังว่าถ้าที่ว่างเหนือ tube นั้นมีมากพอและแต่ละ tube มีแรงต้านการไหลที่มากพอ แก๊สที่ไหลเข้ามาทางท่อนั้นก็จะสามารถกระจายตัวไปได้สม่ำเสมอก่อนที่จะไหลเข้าแต่ละ tube แต่ถึงกระนั้นก็ตามก็พบว่าแม้ว่าตอนเริ่มต้นนั้นจะทำให้ pressure drop คร่อมแต่ละ tube นั้นเท่ากัน แต่เมื่อตัวเร่งปฏิกิริยาหมดอายุการใช้งานกลับพบว่า tube ที่อยู่ตรงบริเวณตอนกลางคืออยู่ใต้ท่อป้อนแก๊สเข้านั้นมี pressure drop เพิ่มขึ้นมาก ทั้งนี้น่าจะเป็นเพราะความเร็วแก๊สที่พุ่งออกมาจากท่อนั้นปะทะเข้ากับ tube เหล่านี้โดยตรง (รูปที่ ๓) แม้ว่า pressure drop ใน tube เหล่านี้จะสามารถป้องกันไม่ให้แก๊สที่พุ่งเข้ามานั้นพุ่งผ่านออกไปได้ทันที แต่แรงกระทำของแก๊สที่พุ่งเข้ามากระทบก็ทำให้เบดตัวเร่งปฏิกิริยาเกิดการอัดตัวแน่นขึ้น ทำให้ pressure drop เพิ่มขึ้น ปรากฏการณ์คล้ายกันนี้ก็เคยพบกับ monolith ที่ใช้ในกรองไอเสียรถยนต์ กล่าวคือผนังของ monolith ที่อยู่ตรงทางเข้าแก๊สไอเสียมีการสึกหรออย่างเห็นได้ชัดเมื่อเทียบกับบริเวณอื่น
  
รูปที่ ๓ การเปลี่ยนแปลงค่าความดันลดในแต่ละ tube ของ muti tubular reactor ∆p0 คือค่าความดันลดก่อนเริ่มใช้งาน ∆p คือค่าความดันลดหลังสิ้นสุดการใช้งาน t = 0 คือก่อนเริ่มใช้งาน EOR คือหลังสิ้นสุดการใช้งาน รูปนี้นำมาจากรูปที่ ๑๓ ในบทความเรื่อง "Problems of Mathematical Modelling of Industrial Fixed-bed Reactors" โดย Gerhart Eigenberger และ Wilhelm Ruppel ตีพิมพ์ในวารสาร Ger. Chem. Eng. 9 (ปีค.ศ. 1986) หน้า 74-83

ตัวเร่งปฏิกิริยาที่เป็นโลหะออกไซด์นั้นในระหว่างการใช้งานมันก็โดนออกซิเจนความเข้มข้นสูงอยู่ตลอดเวลา ดังนั้นการนำเอามันออกมาจึงไม่ต้องกังวลเรื่องการสัมผัสกับอากาศ เพราะมันจะเฉื่อยต่อออกซิเจนในอากาศที่อุณหภูมิห้องอยู่แล้ว (ตรงนี้ไม่เหมือนกับตัวเร่งปฏิกิริยาที่เป็นโลหะที่อาจลุกติดไฟได้ทันทีถ้าหากสัมผัสกับอากาศ) รูปที่ ๔-๖ นั้นนำมาจากเอกสารประชาสัมพันธ์ของบริษัทที่รับทำหน้าที่นำตัวเร่งปฏิกิริยาเก่าออกและบรรจุตัวเร่งปฏิกิริยาใหม่ให้กับ muti tubular fixed-bed reactor โดยในรูปที่ ๔ นั้นเป็นภาพแสดงการทำงานในช่วงการนำตัวเร่งปฏิกิริยาเก่าออกและทำความสะอาด tube แต่ละ tube
 
ที่เคยเห็นมานั้น ในการเตรียมการเปลี่ยนถ่ายตัวเร่งปฏิกิริยานั้นจะมีการเตรียมฝาพลาสติกหลากสีสำหรับปิดทางเข้าด้านบนของ tube การที่ต้องมีฝาหลากสีก็เพื่อเป็นการแสดงให้เห็นว่า tube ไหนทำความสะอาดแล้ว (ก็จะปิดด้านบนด้วยฝาสีหนึ่ง) tube ไหนบรรจุตัวเร่งปฏิกิริยาแล้ว (ก็จะเปลี่ยนสีฝาที่ปิด) tube ไหนวัด pressure drop แล้วอยู่ในเกณฑ์ (ก็ใช้ฝาปิดอีกสีหนึ่ง) tube ไหนมีค่า pressure drop อยู่นอกเกณฑ์และต้องทำการแก้ไข (ก็จะเปลี่ยนฝาปิดเป็นอีกสีหนึ่ง) ดังนั้นจะเห็นว่าจำนวนฝาปิดที่ต้องเตรียมนั้นมันมีมากไม่ใช่เล่นเหมือนกัน เพราะมันต้องมีครบตามจำนวน tube (จะยกเว้นก็ฝาที่มีสีแสดง tube ที่มีปัญหาที่คงไม่ต้องมีครบเท่าจำนวน tube)
  
รูปที่ ๔ นำมาจากหน้าที่ ๒-๔ ของเอกสาร "Catalyst change out in tubular reactors" ของบริษัท Mourik International B.V. ตามที่อยู่ที่อยู่มุมล่างขวาของรูปที่ ๖ รูปนี้นำมาจากหน้าที่ ๒ ของเอกสารดังกล่าว รูปนี้เป็นขั้นตอนการนำตัวเร่งปฏิกิริยาเก่าออกและทำความสะอาด tube ก่อนเริ่มบรรจุตัวเร่งปฏิกิริยาใหม่

รูปที่ ๕ ต่อจากรูปที่ ๔ รูปนี้แสดงขั้นตอนการบรรจุตัวเร่งปฏิกิริยา


รูปที่ ๖ ขั้นตอนการตรวจสอบ pressure drop (ในเอกสารใช้คำย่อว่า Pd)
 
ที่ผมเคยเห็นนั้นตัวเร่งปฏิกิริยาที่จะทำการบรรจุจะถูกแบ่งใส่ถุงเล็ก ๆ 1 ถุงต่อ 1 tube โดยแต่ละถุงนั้นจะมีตัวเร่งปฏิกิริยาบรรจุอยู่เท่ากัน ทั้งนี้เพื่อให้มั่นใจว่าทุก tube จะมีตัวเร่งปฏิกิริยาบรรจุอยู่เท่ากัน (แต่ในรูปที่ ๕ นั้นดูเหมือนจะใช้เทคโนโลยีเข้าช่วยด้วยการใช้เครื่องบรรจุ เรียกได้ว่าทันสมัยมากขึ้น) แต่แม้ว่าจะใส่ตัวเร่งปฏิกิริยาปริมาณเท่ากันลงในแต่ละ tube ก็ไม่ได้รับรองว่าจะได้ pressure drop ทุก tube เท่ากันเสมอไป เพราะอนุภาคตัวเร่งปฏิกิริยาที่มีขนาดใหญ่และไหลลงไปต่อเนื่องอย่างรวดเร็วนั้นอาจเกิดการขัดตัวกัน (ทำให้กลายเป็นเบดที่ไม่ต่อเนื่อง มีช่องว่างอยู่ภายใน) หรือมีรูปแบบการเรียงซ้อนที่แตกต่างกัน ทำให้ค่า pressure drop คร่อมแต่ละ tube นั้นแตกต่างกันอยู่ ดังนั้นจึงจำเป็นที่ต้องมีการวัด pressure drop คร่อมแต่ละ tube
 
tube ที่ผ่านการทำความสะอาดและติดตั้ง support รองรับตัวเร่งปฏิกิริยาที่ด้านล่างแล้วก็จะมีฝาปิดสีหนึ่ง พอเทตัวเร่งปฏิกิริยาลงไปก็จะเปลี่ยนฝาปิดเป็นอีกสีหนึ่ง จากนั้นก็จะทำการวัด pressure drop แต่ละ tube การวัด pressure tube ทำได้ด้วยการอัดอากาศให้ไหลผ่านด้วยอัตราการไหลที่กำหนด แล้วดูค่าความดันที่ต้องใช้ ถ้าค่าที่วัดได้นั้นอยู่ในช่วงที่ยอมรับได้ ก็จะปิด tube ด้วยฝาปิดอีกสีหนึ่ง แต่ถ้าวัดแล้วพบว่าค่า pressure drop นั้นอยู่นอกเกณฑ์ ก็จะใช้ฝาปิดสีที่แตกต่างออกไป กล่าวคือถ้าวัดแล้วพบว่า pressure drop สูงเกินไป ก็อาจใช้สุญญากาศดูดเอาตัวเร่งปฏิกิริยาออกมาส่วนหนึ่ง ในทางกลับกันถ้าวัดแล้วพบว่าค่า pressure drop นั้นต่ำเกินไป ก็ใช้การเติมตัวเร่งปฏิกิริยาเพิ่มเติม แต่ถ้าพบว่าค่า pressure drop ที่วัดได้นั้นแตกต่างจากค่าที่ยอมรับได้ไปมาก ก็ต้องรื้อท่อนั้นออกมาบรรจุใหม่
 
ตัวเร่งปฏิกิริยาโลหะออกไซด์ที่ใช้ในบรรยากาศที่มีความเข้มข้นออกซิเจนสูงนี่ดีอยู่อย่าง คือไม่ต้องกังวลเรื่องการทำปฏิกิริยากับออกซิเจนที่มีการคายความร้อนสูงเหมือนในกรณีของตัวเร่งปฏิกิริยาที่เป็นโลหะ ทำให้การนำตัวเร่งปฏิกิริยาใช้งานแล้วออกจาก reactor นั้นไม่ต้องกังวลเรื่องไฟไหม้ที่อาจเกิดจากการสัมผัสกับอากาศ

ปิดท้ายที่ว่างท้ายหน้าฉบับนี้ด้วยภาพบรรยากาศฝนตกในมหาวิทยาลัยเมื่อเที่ยงวันวานที่ผ่านมาก็แล้วกันครับ