แสดงบทความที่มีป้ายกำกับ nitroaniline แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ nitroaniline แสดงบทความทั้งหมด

วันอังคารที่ 4 เมษายน พ.ศ. 2566

เมื่อ Nitroaniline reactor ระเบิด (ตอน : ผสมผิดสัดส่วน) MO Memoir : Tuesday 4 April 2566

กรณีถังปฏิกรณ์ผลิต Nitroaniline ระเบิด เท่าที่ค้นในอินเทอร์เน็ตก็พบเพียงแค่ 3 ครั้ง ซึ่งเกิดในช่วงเวลาใกล้เคียงกัน ที่เล่าไปครั้งที่แล้ว (Memoir ฉบับวันอังคารที่ ๒๘ มีนาคม ๒๕๖๖) เป็นเหตุการณ์เมื่อเดือนสิงหาคม ปีค.ศ. ๑๙๖๙ (พ.ศ. ๒๕๑๒) ที่เป็นการต้องการเพิ่มกำลังการผลิตด้วยการผสมสารตั้งต้นในปริมาณที่มากขึ้น แต่ก่อนหน้านั้นเมื่อวันที่ ๑ มกราคม ปีเดียวกันก็มีการระเบิดเกิดขึ้นเนื่องจากผสมสารตั้งต้นผิดสัดส่วนโดยไม่ตั้งใจ เอกสารที่พบไม่ได้ให้รายละเอียดว่าเกิดที่ใด แต่เป็นเอกสารที่ได้มาจากเว็บ Failure Knowledge Database ของประเทศญี่ปุ่น จึงคาดว่าน่าจะเป็นเหตุการณ์ที่เกิดขึ้นที่ประเทศญี่ปุ่น (เหตุการณ์นี้เป็น p-Nitroaniline)

ส่วนเหตุการณ์ที่สามเกิดในปีค.. ๑๙๗๑ (.. ๒๕๑๔) พิจารณาจากรายละเอียดแล้วน่าจะเป็นเหตุการณ์ที่เกิดขึ้นในประเทศสหรัฐอเมริกา และใช้กระบวนการผลิตแบบเดียวกัน เอกสารที่ให้รายละเอียดของเหตุการณ์ไม่สามารถเข้าถึงได้ เพราะทางมหาวิทยาลัยไม่ได้บอกรับวารสารดังกล่าว ข้อมูลเหตุการณ์นี้ปรากฏในบทความเรื่อง "Thermo-Kinetic Analysis of Reactions Involved in the Manufacture of o-Nitroaniline" ตีพิมพ์ในวารสาร Process Safety Progress (Vol. 20 No. 2), July 2001 หน้า 123-129 โดยโรงงานดังกล่าวเดินเครื่องเป็นปรกติมา ๓๐ ปีก่อนเกิดเหตุ สาเหตุของการระเบิดเมื่อสอบสวนไปพบว่าต้นตอมาจากการที่ฝ่ายบริหารได้ตัดสินใจ "Override" ระบบ interlock สารป้อน (ทำนองว่าไปปิดระบบรักษาความปลอดภัยออก) ในช่วงเวลาระหว่างการซ่อมแซม Tank (บทความใช้คำว่า Tank แต่ดูจากเนื้อหาแล้วน่าจะหมายถึงถังปฏิกรณ์) ทำให้เกิดการป้อน o-Nitrochlorbenzene เข้าระบบมากเกินไป และไม่ได้มีรายละเอียดอะไรมากไปกว่านี้

ก่อนไปยังเหตุการณ์ที่ประเทศญี่ปุ่น ขอย้อนกลับไปยังเหตุการณ์ที่เล่าไปในครั้งที่แล้วนิดนึงก่อน (สิงหาคม ปีค.. ๑๙๖๙) คือมันมีประเด็นเกี่ยวกับระบบระบายความดันที่ไม่ทำงาน ซึ่งจากการคำนวณนั้นพบว่า ถ้าระบบระบายความดันทำงาน การระเบิดก็ไม่น่าจะเกิดขึ้น

รูปที่ ๑ การใช้ Rupture disk ในการป้องกัน Safety valve พึงสังเกตว่าต้องมีการติดตั้งเกจวัดความดันหรือ excess flow valve (วาล์วที่ยอมให้การไหลช้า ๆ ไหลผ่านได้ แต่ถ้ามีการไหลอย่างรวดเร็วกระทันหัน วาล์วจะปิด) อยู่ระหว่าง Rupture disc และ Safety valve เพื่อไว้ตรวจสอบว่า Rupture disc มีการรั่วหรือไม่ และเพื่อระบายแก๊สที่รั่วออกมาขังอยู่บริเวณนี้ออกไป

Safety valve และ Rupture disc เป็นอุปกรณ์ระบายความดันที่จะเปิดเมื่อความดันในระบบสูงเกิน Safety valve มีข้อดีตรงที่เมื่อความดันในระบบลดลงกลับมาอยู่ที่ระดับปลอดภัย วาล์วก็จะปิด ในขณะที่ Rupture disc นั้นมันทำงานด้วยการฉีกขาดของแผ่นโลหะ มันจึงไม่สามารถปิดตัวเองได้ แต่มันก็มีข้อดีตรงที่ถ้าความดันเพิ่มขึ้นรวดเร็วมาก (เช่นเกิดการระเบิดขึ้นภายใน) Rupture disc จะระบายความดันได้เร็วกว่า

ตัว Safety valve เองก็มีโอกาสที่จะปิดไม่สนิท เช่นของไหลที่ไหลผ่านวาวล์นั้นสกปรก มีคราบตกค้างอยู่ที่ตัววาล์วหลังเปิดใช้ หรือกรณีที่ของไหลในระบบนั้นมีฤทธิ์กัดกร่อน ที่สามารถทำให้วาล์วเสียหายได้ ในกรณีเหล่านี้ก็จะก่อให้เกิดปัญหาการรั่วไหลออกจากระบบตลอดเวลา

ในกรณีเช่นนี้ก็ป้องกันได้ด้วยการติดตั้ง Rupture disc ทางด้านขาเข้าของ Safety valve (รูปที่ ๑) โดยต้องตั้งให้ Rupture disc ทำงานก่อน Safety valve แต่ถ้าทำเช่นนี้ต้องมีระบบตรวจสอบหรือระบายความดันที่สะสมในที่ว่างระหว่าง Rupture disc และ Safety valve เพราะ Rupture disc นั้นทำงานโดยอาศัยผลต่างความดัน (pressure difference) ตัวอย่างเช่นถ้ามันออกแบบมาให้เปิดที่ความดัน 10 atm โดยปล่อยออกสู่บรรยากาศ แต่ถ้าความดันด้านขาออกเป็น 5 atm ตัว Rupture disc ตัวนี้ก็จะเปิดที่ความดัน 15 atm ที่สูงกว่าเดิม

เหตุการณ์นี้อาจเกิดได้ถ้าหาก Rupture disc มีรูรั่ว (เช่น "ตามด" หรือ pin hole) ที่ทำให้ความดันในที่ว่างระหว่าง Rupture disc และด้านขาเข้าของ Safety valve มีค่าเท่ากับความดันในระบบ ดังนั้น Rupture disc จะไปเปิดที่ความดันที่มันถูกออกแบบมาให้เปิด บวกกับความดันของระบบ

รูปที่ ๒ ระบบระบายความดันที่ปลิวหลุดออกมาของถังปฏิกรณ์ที่เกิดระเบิดที่ Monsanto เมื่อเดือนสิงหาคมปีค.. ๑๙๖๙

ในกรณีที่ของไหลนั้นเป็นของไหลที่ไม่อันตรายหรือสามารถปล่อยออกสู่อากาศได้โดยตรง ก็อาจใช้การติดตั้ง excess flow valve ไว้เพื่อระบายความดันถ้าหากมีการรั่วไหลของแก๊สผ่าน Rupture disc ในอีกทางเลือกหนึ่งนั้นก็ใช้การติดตั้งเกจวัดความดันเพื่อไว้ตรวจดูว่ามีการรั่วไหลหรือไม่ ถ้าพบว่าความดันเพิ่มขึ้นก็แสดงว่า Rupture disc มีรูรั่ว

ในเหตุการณ์ที่เล่าไปใน Memoir ฉบับที่แล้วพบว่า Rupture disk มีรูรั่ว ทำให้ Rupture disc ที่ควรเปิดที่ความดันประมาณ 700 psia ไม่ทำงาน (ความดันทำงานปรกติของระบบคือประมาณ 450-550 psig) ระบบระบายความดันจึงไม่ทำงานจนกว่าความดันในระบบขึ้นสูงเกิน 1000 psig

เหตุการณ์ที่ประเทศญี่ปุ่นนำมาจากบทความเรื่อง "Explosion of the nitroaniline preparation reactor due to error in the quantity of supply of raw materials" (http://www.shippai.org/fkd/en/cfen/CC1000102.html) ที่เกิดเมื่อวันที่ ๑ มกราคม ค.. ๑๙๖๙ (.. ๒๕๑๒) ที่เป็นเหตุการณ์ที่เกิดก่อนเรื่องที่เล่าไปในตอนที่แล้ว ๘ เดือน ที่ต่างกันก็คือในเหตุการณ์นี้เป็นการผลิต p-Nitroaniline

สาเหตุเกิดจากปํ๊มที่ทำหน้าที่ป้อนสารตั้งต้นเข้าถังปฏิกรณ์เกิดเสีย จึงมีการเปลี่ยนไปใช้ปั๊มสำรองแทน ทำให้อัตราการป้อนสารเปลี่ยนแปลง ส่งผลให้อุณหภูมิและความดันเพิ่มสูงขึ้นกระทันหันเนื่องจากอัตราการเกิดปฏิกิริยาเพิ่มขึ้นอย่างรวดเร็ว บทความไม่ได้ให้ข้อมูลใด ๆ ว่าปั๊มสารตั้งต้นตัวไหนที่เกิดปัญหา (รูปที่ ๓)

รูปที่ ๓ เหตุการณ์ที่เกิดที่ประเทศญี่ปุ่นเมื่อวันที่ ๑ มกราคม ค.. ๑๙๖๙ (.. ๒๕๑๒)

แต่เหตุการณ์ทั้งสามก็มีอะไรบางอย่างที่คล้ายกันอยู่ ไม่ว่าจะเป็นการที่ระบบระบายความดันไม่ทำงาน อุปกรณ์วัดอุณหภูมิที่แสดงผลได้แค่เพียง 200ºC ทำให้โอเปอร์เรเตอร์ไม่สามารถรู้ได้ว่าในช่วงอุณหภูมิที่สูงเกิน 200ºC นั้น อุณหภูมิภายในถังปฏิกรณ์กำลังลงลงสู่ระดับปรกติหรือเพิ่มขึ้นอย่างต่อเนื่อง

อ่านทั้ง ๓ เรื่องแล้วรู้สึกว่าน่าจะใช้กระบวนการผลิตเดียวกัน

วันอังคารที่ 28 มีนาคม พ.ศ. 2566

เมื่อ Nitroaniline reactor ระเบิด (ตอน : เอา MBA ออกไปห่าง ๆ reactor) MO Memoir : Tuesday 28 March 2566

เหตุการณ์นี้เกิดเมื่อเวลาประมาณ ๐๐.๑๘ น ของวันที่ ๘ สิงหาคม ค.ศ. ๑๙๖๙ (พ.ศ. ๒๕๑๒) หรือกว่า ๕๐ ปีแล้วที่ประเทศสหรัฐอเมริกา อุบัติเหตุครั้งนี้มีผู้บาดเจ็บ ๔ ราย พยายามหารายละเอียดการสอบสวนเหตุการณ์แล้วแต่หาไม่ได้ พบแต่เป็นโจทย์การบ้านและแบบฝึกหัดให้นิสิตวิศวกรรมเคมีหัดคำนวณเรื่องการออกแบบระบบระบายความร้อนที่เกิดจากปฏิกิริยาเต็มไปหมด รูปและรายละเอียดที่นำมาเล่าในวันนี้นำมาจากเอกสาร ๓ ฉบับ (ผู้ที่สนใจสามารถดาวน์โหลดได้จากลิงก์ที่แนบมา)

ฉบับแรกเป็น power point ที่เป็น lecture note ของสถาบันการศึกษาแห่งหนึ่ง

(http://websites.umich.edu/~essen/html/powerpoints/lecture_notes/lec22/CD/lec22_print.pdf)

ฉบับที่สองดูเหมือนเป็นโปสเตอร์ที่นำเสนอกันในงานประชุมวิชาการ

(https://www.csuohio.edu/sites/default/files/Poster_GATICA.pdf)

และฉบับที่สามเป็นบทความเรื่อง "Layer of Protection Analysis" โดย Ronald J. WIlley ในวารสาร Procedia Engineering, 84(2014), pp 12-22

(https://core.ac.uk/download/pdf/81971209.pdf)

รูปที่ ๑ ภาพโรงงานที่เกิดเหตุที่นำมาจากเอกสารฉบับที่ (๒) 

 

รูปที่ ๒ ส่วนด้านล่างของตัว reactor (Autpclave) ที่หลงเหลืออยู่ (จากเอกสารฉบับที่ (๓))

การผลิต Nitoraniline (ดูรูปที่ ๓ ประกอบ) เริ่มจากการทำปฏิกิริยา Nitration สารประกอบ Chlorobenzene ก่อน จะได้ผลิตภัณฑ์ออกมา ๒ ตัวคือ o-Nitrochlorobenzene (o-NCB) และ p-Nitrochlorobenzene (p-NCB) โรงงานที่เกิดเหตุนี้จะใช้ o-NCB มาทำปฏิกิริยากับ NH3 (ในน้ำ) เพื่อให้ได้ o-Nitroaniline การทำปฏิกิริยาจะเป็นแบบ batch เกิดใน Autoclave ที่อุณหภูมิ 175ºC ความดันประมาณ 550 psi ทิ้งไว้นาน 24 ชั่วโมง NH3 จะเข้าไปแทนที่อะตอม Cl ได้ p-Nitroaniline และ NH4Cl เป็นผลิตภัณฑ์ร่วม

รูปที่ ๓ ปฏิกิริยาการสังเคราะห์ Nitroaniline จาก Chlorobenzene ปรกติการแทนที่อะตอมฮาโลเจนที่เกาะกับวงแหวนเบนซีนจะทำได้ยาก แต่ถ้าหากมีหมู่ดึงอิเล็กตรอนที่แรง (ในกรณีนี้คือหมู่ -NO2) มาเกาะที่ตำแหน่ง o- หรือ p- จะทำให้การแทนที่ทำได้ง่ายขึ้น

โรงงานเดินเครื่องผลิตมาเป็นเวลานาน ๑๙ ปีโดยไม่มีปัญหาอะไร จนกระทั่งมี MBA รายหนึ่งปรากฏตัว และบอกให้เพิ่มกำลังการผลิตขึ้นอีก 3 เท่า ทางโรงงานจึงได้เพิ่มปริมาณ o-NCB ที่เติมเข้าไปและลดปริมาณ NH3 ลง (แต่ก็ยังมากเกินพอสำหรับการทำปฏิกิริยา) ทำให้ปริมาตรรวมของสารในระบบเพิ่มจาก 3.25 m3 เป็น 5 m3 (รูปที่ ๔) เนื่องจากปฏิกิริยานี้คายความร้อน จึงต้องมีระบบระบายความร้อนออกจาก Autoclave (ไม่มีข้อมูลว่าใช้อะไรระบายความร้อน)

รูปที่ ๔ ส่วนผสมสารตั้งต้น (ซ้าย) ของเดิมและ (ขวา) ที่เพิ่มกำลังการผลิตขึ้นเป็น 3 เท่า

การทำปฏิกิริยาเริ่มในคืนวันที่ ๗ สิงหาคม เวลาประมาณ ๒๑.๕๕ น (รูปที่ ๕) ในช่วงแรกนั้นปฏิกิริยาดำเนินไปอย่างปรกติ จนกระเวลาประมาณ ๒๒.๔๐ น เกิดปัญหากับระบบระบายความร้อน ทำให้อุณหภูมิภายใน Autoclave เพิ่มสูงขึ้น (เพราะยังมีปฏิกิริยาเกิดอยู่) อีก ๑๐ นาทีถัดมาระบบระบายความร้อนก็กลับมาทำงานอีกครั้ง ในขณะนั้นอุปกรณ์วัดอุณหภูมิค้างค่าอุณหภูมิไว้ที่ประมาณ 194ºC ทำให้โอเปอร์เรเตอร์ไม่สามารถรู้ได้ว่าหลังจากระบบระบายความร้อนกลับมาทำงานใหม่แล้ว อุณหภูมิใน Autoclave ลดต่ำลงกลับมาค่าเดิม (175ºC) หรือยังคงไต่เพิ่มขึ้นไปอีก ซึ่งผลการวิเคราะห์ภายหลังพบว่าแม้ว่าระบบระบายความร้อนจะกลับมาทำงานเหมือนเดิม แต่ก็ทำได้เพียงแค่ลดอัตราการเพิ่มอุณหภูมิ ไม่สามารถลดอุณหภูมิภายในกลับมายังค่าเดิมได้ (รูปที่ ๕)


รูปที่ ๕ การเปลี่ยนแปลงอุณหภูมิก่อนการระเบิด (จากเอกสาร (๑))

สารประกอบนี้เมื่ออุณหภูมิเพิ่มสูงถึงจุด ๆ หนึ่งก็จะสลายตัวอย่างรวดเร็วและคายความร้อนออกมาในปริมาณมาก ในเหตุการณ์นี้เมื่อไม่สามารถระบายความดันออกจาก Autoclave ได้ทันท่วงที ตัว Autoclave ก็เกิดการระเบิด

รูปที่ ๖ จุดสมดุลของอุณหภูมิการทำปฏิกิริยา

รูปที่ ๖ เป็นกราฟแสดงความสามารถในการระบายความร้อน (เส้นตรงสีน้ำเงิน) ของระบบระบายความร้อน และความร้อนที่ปฏิกิริยาคายออกมา (เส้นสีแดง) ความสามารถในการระบายความร้อนขึ้นอยู่กับผลต่างอุณหภูมิของฝั่งร้อนและฝั่งเย็น และค่าสัมประสิทธิการถ่ายเทความร้อน ถ้าสัมประสิทธิการถ่ายเทความร้อนคงที่ก็จะเป็นกราฟเส้นตรง โดยค่าความชันจะเพิ่มตามค่าสัมประสิทธิ์การถ่ายเทความร้อน ในขณะที่กราฟความร้อนที่ปฏิกิริยาคายออกจะมีรูปร่างเป็นตัว S (ตามสมการ Arrhenius) อุณหภูมิที่จุดสมดุลของการทำงานคือจุดที่กราฟทั้งสองเส้นตัดกัน

ในกรณีที่ค่าสัมประสิทธิการถ่ายเทความร้อนสูงมากพอ เส้นสีน้ำเงินและเส้นสีแดงจะตัดกันที่ตำแหน่งเดียว คืออยู่ที่ประมาณตำแหน่ง A ในอีกด้านหนึ่งถ้าค่าสัมประสิทธิการถ่ายเทความร้อนต่ำเกินไป เส้นสีน้ำเงินและเส้นสีแดงจะตัดกันที่ตำแหน่งเดียว แต่จะอยู่ที่ประมาณตำแหน่ง C ดังนั้นจะมีอยู่ช่วงหนึ่งที่ค่าสัมประสิทธิ์การถ่ายเทความร้อนสามารถทำให้เส้นสีน้ำเงินและสีแดงนั้นตัดกันได้ 3 ตำแหน่งคือ A, B และ C ในรูป

ในเหตุการณ์นี้ในช่วงแรกการทำงานอยู่ที่จุด A แต่ในช่วงที่ระบบระบายความร้อนไม่ทำงานนั้น อุณหภูมิในระบบเพิ่มสูงขึ้น ซึ่งถ้าระบบระบายความร้อนกลับมาทำงานทันก่อนที่อุณหภูมิจะขึ้นถึงจุด B ระบบก็จะเย็นตัวลงกลับมาที่จุด A ได้ เพราะเป็นช่วงที่ค่าความสามารถในการระบายความร้อนนั้นสูงกว่าค่าความร้อนที่ปฏิกิริยาคายออกมา (เส้นสีน้ำเงินสูงกว่าเส้นสีแดง)

แต่ถ้าระบบระบายความร้อนกลับมาทำงานในช่วงที่อุณหภูมิพ้นจุด B ไปแล้ว ระบบระบายความร้อนจะไม่สามารถดึงให้อุณหภูมิภายใน Autoclave ลดต่ำลงได้ เพราะปริมาณความร้อนที่คายออกมานั้นสูงกว่าความร้อนที่ระบบระบายความร้อนจะสามารถดึงออกไปได้ (เส้นสีแดงสูงกว่าเส้นสีน้ำเงิน)

แต่กราฟนี้เป็นกราฟกรณีที่ไม่มีปฏิกิริยาอื่นเพิ่มเติมเข้ามา ซึ่งในเหตุการณ์นี้ไม่ใช่อย่างนั้น เพราะเมื่ออุณหภูมิเพิ่มสูงขึ้นถึงจุดหนึ่งก็มีปฏิกิริยาการสลายตัวของ o-NCB เพิ่มเข้ามา ทำให้อุณหภูมิระบบไต่ขึ้นอย่างรวดเร็วจนเกิดการระเบิด