Memoir ฉบับนี้เป็นตอนต่อเนื่องจากปีที่ ๔ ฉบับที่ ๓๓๙ วันจันทร์ที่ ๒๕ กรกฎาคม ๒๕๕๔ เรื่อง "GC-2014 ECD & PDD ตอนที่ ๑๐ ผลกระทบจากการเปลี่ยนตำแหน่งของวาล์วตัวที่ ๔" โดยในอังคารที่ผ่านมาเราได้ทดลองคงตำแหน่งวาล์วตัวที่ ๔ ไว้ที่ "0" และทดลองปรับตำแหน่งของวาล์วตัวที่ ๓ (วาล์วฉีดสารตัวอย่าง) ดู ผลออกมาเป็นอย่างไรก็ขอบรรยายไปตามรูปก็แล้วกัน
บันทึกช่วยจำของกลุ่มวิจัยตัวเร่งปฏิกิริยาโลหะออกไซด์ บันทึกความจำของวิศวกรเคมีผู้ลงมือปฏิบัติ (mo.memoir@gmail.com)
วันพุธที่ 27 กรกฎาคม พ.ศ. 2554
GC-2014 ECD & PDD ตอนที่ ๑๑ ผลกระทบจากการเปลี่ยนตำแหน่งของวาล์วตัวที่ ๓ MO Memoir : Wednesday 27 July 2554
Memoir ฉบับนี้เป็นตอนต่อเนื่องจากปีที่ ๔ ฉบับที่ ๓๓๙ วันจันทร์ที่ ๒๕ กรกฎาคม ๒๕๕๔ เรื่อง "GC-2014 ECD & PDD ตอนที่ ๑๐ ผลกระทบจากการเปลี่ยนตำแหน่งของวาล์วตัวที่ ๔" โดยในอังคารที่ผ่านมาเราได้ทดลองคงตำแหน่งวาล์วตัวที่ ๔ ไว้ที่ "0" และทดลองปรับตำแหน่งของวาล์วตัวที่ ๓ (วาล์วฉีดสารตัวอย่าง) ดู ผลออกมาเป็นอย่างไรก็ขอบรรยายไปตามรูปก็แล้วกัน
วันจันทร์ที่ 25 กรกฎาคม พ.ศ. 2554
GC-2014 ECD & PDD ตอนที่ ๑๐ ผลกระทบจากการเปลี่ยนตำแหน่งของวาล์วตัวที่ ๔ MO Memoir : Monday 25 July 2554
Memoir ฉบับนี้อิงไปยังฉบับก่อนหน้านี้ ๒ ฉบับคือ
Memoir ปีที่ ๓ ฉบับที่ ๒๗๙ วันพุธที่ ๓๐ มีนาคม ๒๕๕๔ เรื่อง "GC-2014 ECD & PDD ตอนที่ ๑ แผนผนังระบบเก็บแก๊สตัวอย่าง" รูปที่ ๒ แผนผังการไหลของแก๊สของเครื่อง GC-2014 ECD & PDD และ
Memoir ปีที่ ๔ ฉบับที่ ๓๓๘ วันศุกร์ที่ ๒๒ กรกฎาคม ๒๕๕๔ เรื่อง "GC-2014 ECD & PDD ตอนที่ ๙ ตำแหน่งวาล์วตัวที่ ๓ และตัวที่ ๔
จากรูปที่ ๒ ของ Memoir ฉบับที่ ๒๗๙ นั้น He carrier gas ที่ไหลผ่านคอลัมน์ต่าง ๆ ไปยัง PDD นั้นจะถูกควบคุมความดันมาจาก APC-4 ซึ่งจะจ่ายความดันด้านขาออกให้คงที่ตลอด แต่เส้นทางการไหลนั้นถูกควบคุมด้วยตำแหน่งวาล์วตัวที่ ๓ และวาล์วตัวที่ ๔
กล่าวคือถ้าวาล์ว ๓ อยู่ในตำแหน่ง "0" (เก็บตัวอย่าง) He ที่ไหลไปยังวาล์ว ๓ จะมีสองส่วน ส่วนหนึ่งไหลผ่านคอลัมน์ PC-2 Chromosorb แล้วระบายทิ้งออกไปทาง CC-3 และอีกส่วนหนึ่งไหลผ่านคอลัมน์ MC-3 Chromosorb 103 ไปยังวาล์ว ๔
แต่ถ้าวาล์ว ๓ อยู่ในตำแหน่ง "1" (ฉีดตัวอย่าง) He ที่เคยไหลตรงไปยังคอลัมน์ PC-2 Chromosorb จะถูกเปลี่ยนเส้นทางการไหลให้ไหลไปยัง sampling loop ก่อน จากนั้นจึงดันแก๊สตัวอย่างใน sampling loop ให้เข้าไปยังคอลัมน์ PC-2 Chromosorb และไหลต่อไปยังคอลัมน์ MC-3 Chromosorb 103 ก่อนที่จะมุ่งตรงไปยังวาล์ว ๔
ถ้าวาล์ว ๔ อยู่ในตำแหน่ง "0" จะยอมให้แก๊สที่มาจากวาล์ว ๓ ไหลเข้า PDD โดยผ่านคอลัมน์ MC-4 Chromosorb 103
แต่ถ้าวาล์ว ๔ อยู่อยู่ในตำแหน่ง "1" วาล์วจะปัดแก๊สที่มาจากวาล์ว ๓ ไม่ให้เข้า PDD โดยแก๊สที่ไหลผ่านคอลัมน์ MC-4 Chromosorb 103 จะเป็นแก๊สที่มาจาก APC-4 โดยตรง ซึ่งในตำแหน่ง "1" นี้น่าจะทำให้ความดันแก๊สก่อนไหลเข้าคอลัมน์ MC-4 Chromosorb 103 มีค่ามากกว่าเมื่อวาล์ว ๔ อยู่ในตำแหน่ง "0"
ดังนั้นจะเห็นว่าแก๊ส He ที่จ่ายมาจาก APC-4 นั้น (ซึ่งจ่ายมาที่ความดันคงที่) ก่อนที่จะไหลไปถึง PDD จะไหลผ่านคอลัมน์กี่คอลัมน์นั้นขึ้นอยู่กับตำแหน่งวาล์วตัวที่ ๓ และ ๔ ถ้าวาล์วตัวที่ ๔ อยู่ในตำแหน่ง "1" ก็จะไหลผ่านคอลัมน์ MC-4 Chromosorb 103 เพียงคอลัมน์เดียว โดยไม่สนว่าวาล์วตัวที่ ๓ จะอยู่ในตำแหน่งใด
ถ้าวาล์วตัวที่ ๓ อยู่ในตำแหน่ง "0" จำนวนคอลัมน์ที่แก๊ส He จาก APC-4 ไหลผ่านจะขึ้นอยู่กับตำแหน่งของวาล์วตัวที่ ๓ ด้วย กล่าวคือถ้าวาล์วตัวที่ ๓ อยู่ในตำแหน่ง "0" แก๊ส He จาก APC-4 จะไหลผ่านเพียงสองคอลัมน์คือ คอลัมน์ MC-3 Chromosorb 103 และคอลัมน์ MC-4 Chromosorb 103
แต่ถ้าวาล์ว ๓ อยู่ในตำแหน่ง "1" จำนวนคอลัมน์ที่แก๊ส He จาก APC-4 ไหลผ่านจะเพิ่มเป็นสามคอลัมน์คือคอลัมน์ PC-2 Chromosorb คอลัมน์ MC-3 Chromosorb 103 และคอลัมน์ MC-4 Chromosorb 103
ดังนั้นจะเห็นว่าอัตราการไหลของ carrier gas เข้า PDD นั้นจะเปลี่ยนไปตามตำแหน่งของวาล์ว ๓ และ ๔ เนื่องจากความดันขาเข้าคงที่ แต่เส้นทางการไหลมีความต้านทาน (เนื่องจากต้องไหลผ่านคอลัมน์) เปลี่ยนแปลงไปตามจำนวนคอลัมน์ที่ไหลผ่าน
คำถามก็คือ "การเปลี่ยนแปลงอัตราการไหลของ carrier gas เข้า PDD ส่งผลต่อสัญญาณการวัดหรือไม่"
เนื่องจาก PDD (Pulse Discharge Detector) นั้นตอบสนองต่อสารเกือบทุกชนิดและยังมีความว่องไวสูงมาก เมื่อเราทำการทดสอบโดยการฉีดอากาศเข้าไปจึงทำให้เห็นพีคต่าง ๆ หลายพีคที่ไม่สามารถระบุได้ว่าเป็นพีคของแก๊สชนิดใดบ้าง (ในอากาศมีทั้งไนโตรเจน ออกซิเจน คาร์บอนไดออกไซด์ ไอน้ำ อาร์กอน ฯลฯ) แต่เมื่อเราทำการวัดแก๊สจากการทดลอง เรากลับพบว่าพีคบางพีคในบางตำแหน่งนั้นมีขนาดคงที่ โดยไม่ขึ้นอยู่กับองค์ประกอบของแก๊สที่ฉีดเข้าไป และรูปร่างของพีคนั้นไม่ใช่ลักษณะของพีค GC ตามปรกติ ด้วยเหตุนี้จึงทำให้เราต้องทำการตรวจสอบดูว่าเมื่อวาล์วตัวที่ ๓ และตัวที่ ๔ เปลี่ยนตำแหน่งนั้น ส่งผลอย่างไรบ้างต่อสัญญาณจาก PDD
การทดสอบนี้เริ่มกระทำในช่วงเช้าวันพฤหัสบดีที่ ๒๑ ที่ผ่านมา โดยเริ่มจากการหาก่อนว่าตำแหน่ง "0" และ "1" ของวาล์วแต่ละตัวนั้นทำให้การไหลเป็นอย่างไร ซึ่งได้รายงานไว้ใน Memoir ฉบับที่ ๓๓๘ แล้ว
การทดสอบที่ทำต่อเนื่องในช่วงเย็นวันพฤหัสบดีที่ ๒๑ และวันศุกร์ที่ ๒๒ คือการหาว่าการเปลี่ยนตำแหน่งของวาล์ว ๔ ส่งผลอย่างไร โดยทำการตั้งตำแหน่งวาล์ว ๓ ไว้ที่ "0" ก่อน (เพื่อตัดสิ่งที่อาจตกค้างอยู่ใน sampling loop และคอลัมน์ PC-2 Chromosorb ออกไป) จากนั้นตั้งโปรแกรมควบคุมวาล์วเอาไว้ดังนี้
ก่อนเริ่มการวิเคราะห์ วาล์ว ๓ อยู่ที่ตำแหน่ง "0"
วาล์ว ๔ อยู่ที่ตำแหน่ง "1"
เมื่อเริ่มการวิเคราะห์ เวลา 2.00 นาที เปลี่ยนวาล์ว ๔ เป็นตำแหน่ง "0"
เวลา 8.50 นาที เปลี่ยนวาล์ว ๔ กลับเป็นตำแหน่ง "1"
โดยที่วาล์ว ๓ อยู่ที่ตำแหน่ง "0" ตลอดการวิเคราะห์
ผลการทดสอบแสดงในรูปที่ ๑ ข้างล่าง
รูปที่ ๑ สัญญาณจาก PDD โดยการกำหนดให้วาล์ว ๓ อยู่ในตำแหน่ง "0" (ตำแหน่งที่ sampling loop เก็บตัวอย่าง) ตลอดการวิเคราะห์ ส่วนตำแหน่งวาล์ว ๔ ก่อนเริ่มการวิเคราะห์ (เวลา 0 นาที) กำหนดให้อยู่ในตำแหน่ง "1" (ไม่ให้แก๊สจากวาล์ว ๓ ไหลเข้า PDD) จากนั้นที่เวลา 2 นาทีจึงสั่งให้วาล์ว ๔ ขยับตัวไปที่ตำแหน่ง "0" (ให้แก๊สจากวาล์ว ๓ ไหลเข้า PDD) และที่เวลา 8.5 นาทีก็สั่งให้วาล์ว ๔ ขยับตัวกลับคืนไปที่ตำแหน่ง "1" อีกครั้ง อุณหภูมิการทดลองคือ 90ºC ความดันขาออกจาก APC-4 คือ 140 kPa รูปแสดงสัญญาณที่ได้จากการฉีด ๓ ครั้งต่อเนื่องกัน
จะเห็นว่าเมื่อสั่งให้วาล์ว ๔ เปลี่ยนจากตำแหน่ง "1" มายังตำแหน่ง "0" ที่เวลา 2 นาทีนั้น เส้น base line จะเคลื่อนตัวสูงขึ้น และเมื่อสั่งให้วาล์ว ๔ เปลี่ยนกลับไปยังตำแหน่ง "1" ใหม่ที่เวลา 8.5 นาที สัญญาณมีการกระชากเล็กน้อยและตกลงทันที จนถึงเวลาประมาณ 11 นาทีเศษ ก็มีการเปลี่ยนแปลงเกิดขึ้น
กล่าวคือในการฉีดสองครั้งแรก (Intensity 1 และ Intensity 2) สัญญาณมีการไต่ขึ้นใหม่ แต่ในการฉีดครั้งที่ 3 (Intensity 3) สัญญาณกลับมีการตกลงไปก่อนวกกลับขึ้นมาใหม่ ซึ่งการเปลี่ยนแปลงตรงนี้ขณะนี้เรายังไม่มีคำอธิบายว่าเกิดจากอะไร แต่สงสัยว่าคงเป็นสารที่ตกค้างอยู่ในคอลัมน์ PC-2 Chromosorb และ/หรือ MC-3 Chromosorb 103
แต่ที่แปลกก็คือการเปลี่ยนแปลงที่เวลา 14 นาทีเศษที่มีลักษณะเหมือนพีคมาก และมีขนาดและรูปร่างซ้ำเดิม พีคตัวนี้คาดว่าเกิดจากการขยับตัวของวาล์ว ๔ ไม่ได้เป็นพีคของสารใด ๆ และดูเหมือนจะปรากฎในโครมาโทแกรมก่อนหน้านี้ด้วย (ดูรูปที่ ๒)
รูปที่ ๒ เส้นโครมาโทแกรม 250ºC และ 450ºC (สองเส้นบน) เป็นเส้นที่ได้จากการทดลองเมื่อวันที่ ๖ กรกฎาคมที่สองอุณหภูมิ โดยการฉีดแก๊สด้านขาออกจาก reactor ส่วนสามเส้นล่างเป็นรูปเดียวกับที่แสดงในรูปที่ ๑ จะเห็นว่าพีคที่เกิดขึ้นในเวลาที่วาล์ว ๔ เปลี่ยนตำแหน่ง (ตรงลูกศรสีแดง) จะตรงกัน ส่วนพีคที่เกิดขึ้นตามหลัง (ตรงลูกศรสีน้ำเงิน) จะมีการเปลี่ยนตำแหน่งเวลา แต่ขนาดของพีคยังประมาณเท่ากันอยู่ ส่วนพีคตรงตำแหน่งเวลา 5 นาทีเศษ (ตรงลูกศรสีเขียว) เดิมคิดว่าเป็นพีคของ NH3 แต่เมื่อทำการ run ปฏิกิริยาพบว่าพีคดังกล่าวมีขนาดคงเดิมตลอด ไม่ว่าค่า conversion ของ NH3 จะเป็น 0% หรือ 100% ก็ตาม ขณะนี้สงสัยว่าพีคดังกล่าวเป็นพีคที่เกิดจากการขยับตัวของวาล์ว ๓ ซึ่งต้องทำการตรวจยืนยันต่อไป
รูปที่ ๓ การทดลองแบบเดียวกับรูปที่ ๑ แต่เปลี่ยนอุณหภูมิเป็น 120ºC (ที่ต้องแยกเป็นสองรูปเพราะข้อมูลมีระยะหว่างระหว่างจุดในแกน x ไม่เท่ากัน) พึงสังเกตว่าพีคตรง 8.5 นาที (ซึ่งเป็นเวลาที่สั่งให้วาล์ว ๔ ขยับตัวตรงลูกศรสีแดง) นั้นไม่ขึ้นกับอุณหภูมิ ส่วนพีคที่เกิดประมาณ 14 นาทีเศษที่ 80ºC เคลื่อนมาปรากฏตัวที่เวลาประมาณ 10 นาที (ลูกศรสีเขียว)
รูปที่ ๓ เป็นการทดลองแบบเดียวกับรูปที่ ๑ แต่เปลี่ยนอุณหภูมิคอลัมน์เป็น 120ºC ซึ่งทำให้เห็นว่าการเปลี่ยนแปลงบางตำแหน่งยังคงอยู่ที่เดิมโดยไม่ขึ้นกับอุณหภูมิ (ที่ 2 กับ 8.5 นาที) แต่บางจุดเกิดการเปลี่ยนแปลงเร็วขึ้น (ที่ตำแหน่ง 14 นาทีเศษมาเป็น 10 นาที)
นอกจากนี้ยังพบว่าในการฉีดครั้งแรก ๆ นั้นมักมีปัญหาทำซ้ำไม่ได้ มักมีพีคหรือหางของพีคปรากฏอยู่ ที่เห็นได้ชัดคือเส้นการฉีดครั้งที่ 1 ในรูปที่ 3 (เส้นสีน้ำเงิน) ที่มีพีคเกิดขึ้นที่เวลาประมาณ 5 นาที (ในกรอบสีน้ำตาล) แต่พอฉีดครั้ง ๆ หลัง ๆ กลับพบว่าพีคดังกล่าวหายไป
ตรงจุดนี้ทำให้สงสัยว่าในการฉีดครั้งแรกที่ 80ºC นั้นอาจมีสารบางตัวยังคงค้างอยู่ในคอลัมน์ แต่พอเพิ่มอุณหภูมิเป็น 120ºC สารดังกล่าวจึงเคลื่อนตัวออกมา และออกมาหมดในการฉีดครั้งแรกที่ 120ºC ทำให้การฉีดครั้งที่ 2-4 จึงได้สัญญาณที่เหมือนกัน
สำหรับวันพรุ่งนี้เช้า เราจะทดลองตรวจสอบผลการเปลี่ยนตำแหน่งของวาล์ว ๓ ระหว่างตำแหน่ง "0" กับ "1" โดยจะคงตำแหน่งวาล์ว ๔ ไว้ที่ "0" ตลอด หวังว่าคนที่นัดเอาไว้ว่าให้เจอกันตอนเช้าจะมาตามเวลานัดนะ เพราะการปรับตั้งเครื่อง GC นั้นเป็นงานที่ใช้เวลา ทำงานทั้งวันอาจจะได้เส้นกราฟเพียงไม่กี่เส้นก็ได้
วันศุกร์ที่ 22 กรกฎาคม พ.ศ. 2554
GC-2014 ECD & PDD ตอนที่ ๙ ตำแหน่งวาล์วตัวที่ ๒ และตัวที่ ๔ MO Memoir : Friday 22 July 2554
วาล์วตัวที่ ๓ คือ 10-port valve ที่รับแก๊สตัวอย่างมาจากวาล์วตัวที่ ๑ และเป็นที่ติดตั้ง sampling loop สำหรับฉีดสารเข้า PDD ส่วนวาล์วตัวที่ ๔ คือ 6-port valve ที่ทำหน้าที่ควบคุมให้แก๊สที่มาจากวาล์วตัวที่ ๓ ให้ไหลไปยัง PDD หรือระบายทิ้งออกไป
ในโปรแกรมคอมพิวเตอร์ควบคุม (GCsolution) นั้นจะบอกตำแหน่งวาล์วเป็น "0" หรือ "1" ซึ่งไม่ใช่การ "เปิด" หรือ "ปิด" เพราะทั้ง 10-port valve และ 6-port valve มันไม่มีการปิดเปิด มันเป็นการเปลี่ยนเส้นทางการไหล ดังนั้นในที่นี้ผมจะไม่ใช้คำว่า "เปิด" หรือ "ปิด" แต่จะใช้คำว่าตำแหน่งที่ "0" หรือตำแหน่งที่ "1" แทน (ในตัวโปรแกรมจะบอกว่า "0" คือ "OFF" และ "1" คือ "ON"
จากการทดสอบในเช้าวันพฤหัสบดีที่ผ่านมา ทำให้เราสามารถระบุตำแหน่ง "0" และ "1" ของวาล์ ๓ และ ๔ ได้ ซึ่งขอแสดงไว้ในรูปที่ ๑-๔ ก็แล้วกัน
รูปที่ ๑ วาล์ว ๓ ในตำแหน่ง "0" ซึ่งเป็นตำแหน่งให้แก๊สตัวอย่างไหลเข้า sampling loop
รูปที่ ๒ วาล์ว ๓ ในตำแหน่ง "1" ซึ่งเป็นตำแหน่งฉีดแก๊สตัวอย่างใน sampling loop เข้าคอลัมน์ PC-2 Chromosorb พึงสังเกตเส้นประที่มีการไหลกลับทิศทาง โดยเฉพาะแก๊สที่ไหลเข้าคอลัมน์ PC-2 Chromosorb
รูปที่ ๓ วาล์ว 4 ในตำแหน่ง "0" ซึ่งเป็นตำแหน่งที่ให้แก๊สที่มาจากวาล์ว 3 ไหลเข้า PDD
รูปที่ ๔ วาล์ว 4 ในตำแหน่ง "1" ซึ่งเป็นตำแหน่งที่ให้ตัดแก๊สที่มาจากวาล์ว 3 ไม่ให้ไหลเข้า PDD พึงสังเกตว่าในตำแหน่งนี้ แก๊ส He จากถังจะจ่ายตรงไปยังคอลัมน์ MC-4 Chromosorb 103 เพียงคอลัมน์เดียว โดยไม่มีการไหลผ่านคอลัมน์อื่นมาก่อน และเนื่องจากความดันที่จ่ายมานั้นคงที่ ดังนั้นเมื่อวาล์ว 4 อยู่ในตำแหน่งนี้ อ้ตราการไหลของ carrier gas ที่มาจาก APC-4 ไปยัง PDD จึงน่าจะมีค่ามากที่สุด
สิ่งหนึ่งที่เราพบก็คือ ในจังหวะที่วาล์ว ๓ หรือ ๔ เปลี่ยนตำแหน่งนั้น จะทำให้เกิดสัญญาณที่ดูเหมือนพีคมาก และในการเปลี่ยนตำแหน่งแต่ละครั้งจะมีสัญญาณที่ดูเหมือนพีคนี้ ๑-๓ ครั้งห่างจากตำแหน่งเวลาที่สั่งเปลี่ยนตำแหน่งวาล์ว ตอนนี้สัณนิฐานว่าน่าจะเกิดจากการที่อัตราการไหลของ carrier gas เปลี่ยนแปลงไป เพราะถ้าดูจาก flow diagram ของระบบแล้วจะพบว่าเมื่อวาล์วแต่ละตัวอยู่ที่ตำแหน่งต่าง ๆ กันนั้น เส้นทางการไหลของแก๊สไปยัง PDD จะแตกต่างกัน โดยในบางตำแหน่งนั้นจะผ่านคอลัมน์เพียงคอลัมน์เดียว (MC-4 Chromosorb 103) ก่อนเข้า PDD แต่ในบางตำแหน่งนั้นจะมีการไหลผ่านคอลัมน์ถึง ๓ คอลัมน์คือเริ่มจาก PC-2 Chromosorb ตามด้วย MC-3 Chromosorb 103 และ MC-4 Chromosorb 103 ก่อนเข้า PDD แต่เนื่องจากความดันแก๊สต้นทางที่มาจาก APC-4 นั้นคงที่ ดังนั้นจึงทำให้สงสัยว่าอัตราการไหลของแก๊สควรจะมีการเปลี่ยนแปลงเมื่อเส้นทางการไหลเปลี่ยนไป ซึ่งในขณะนี้เรากำลังทำการตรวจสอบอยู่
วันจันทร์ที่ 18 กรกฎาคม พ.ศ. 2554
การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๓๑ การทดสอบตัวเร่งปฏิกิริยา - ผลแตกต่างหรือไม่แตกต่าง MO Memoir : Monday 18 July 2554
หลายครั้งที่ผมเห็นคนพยายามจะบอกว่าผลการทดลอง/การวิเคราะห์เปรียบเทียบตัวอย่างของเขานั้นมีความแตกต่าง เนื่องจากตัวเลขที่ได้มานั้นไม่เท่ากัน 100% (ขนาดแตกต่างกันในระดับไม่ถึง 1% ก็เอา แถมได้มาจากการทดลอง/วิเคราะห์ที่ยังไม่มีการทำซ้ำด้วย) ทั้งนี้เป็นเพราะเขาต้องการให้ผลของเขามีความแตกต่าง ทั้ง ๆ ที่ในสายตาผมมันไม่ควรด่วนสรุปเช่นนั้น
แต่ในขณะเดียวกันก็เห็นการสรุปว่าผลการทดลอง/การวิเคราะห์เปรียบเทียบตัวอย่างของเขานั้นไม่มีความแตกต่าง ทั้ง ๆ ที่ตัวเลขที่ได้มานั้นก็ไม่เท่ากัน 100% (ทีนี้ขนาดแตกต่างกันกว่า 5% ก็ยังบอกว่าไม่มีนัยสำคัญ) ทั้งนี้เป็นเพราะเขาไม่ต้องการให้ผลของเขามีความแตกต่าง
อันที่จริงการจะบอกว่าผลการทดลอง/การวิเคราะห์ที่เปรียบเทียบกันระหว่างตัวอย่างตั้งแต่ ๒ ตัวอย่างขึ้นไปนั้นมีความแตกต่างกันหรือไม่ ขึ้นอยู่กับปัจจัยหลายประการ ในบางเรื่องนั้นการแตกต่างกันเพียงเล็กน้อยก็ถือว่าไม่เหมือนกันแล้ว เช่นในกรณีของพีค XRD ที่ถ้าพบว่ามีการเปลี่ยนไป 0.5 องศาก็ถือได้ว่าแตกต่างกัน เพราะพีค XRD เป็นเสมือนลายนิ้วมือของผลึกแต่ละชนิด แต่ในกรณีของผลอินฟราเรด (IR) ซึ่งบางครั้งพบตำแหน่งพีคเปลี่ยนไปมากกว่า 10 cm-1 ก็ยังถือว่าเป็นพีคของหมู่ฟังก์ชันตัวเดิม
ในความเห็นส่วนตัวของผมก่อนที่จะบอกว่าผลการวิเคราะห์ที่ได้มานั้นมีความแตกต่างกันหรือไม่ เรามี ๒ สิ่งที่จะต้องพิจารณาก่อนคือ ความละเอียดของการวัด และความสามารถในการทำซ้ำได้
ความละเอียดของการวัด (หรือ resolution) เป็นตัวบอกขีดจำกัดของการอ่านค่า เราไม่สามารถอ่านความแตกต่างที่น้อยกว่าค่าความละเอียดของการวัดได้ ผลการวิเคราะห์ที่มีปัญหาเรื่องนี้ที่พบเห็นอยู่บ่อย ๆ คือ FT-IR ทั้งนี้เป็นเพราะเวลาวิเคราะห์นั้นไม่ได้ทำการบันทึกเอาไว้ว่าตั้งค่า resolution ของเครื่องไว้ที่ระดับกี่ cm-1 ซึ่ง ทั้งนี้อาจเป็นเพราะทั้งนิสิตและอาจารย์ไม่เคยสัมผัสเครื่องดังกล่าว ก็เลยไม่เคยรู้มาก่อนเลยว่าในการวิเคราะห์นั้นสามารถปรับตั้งค่าอะไรได้บ้าง ใครมาปรับเปลี่ยนค่า resolution ของเครื่องไปเป็นค่าใดก็ไม่เคยรู้ไม่เคยสน รู้แต่ว่าให้ได้ผลออกมาก็พอ เลยมีเหตุการณ์ประเภทตั้งค่า resolution ไว้หยาบ เช่นที่ 8 หรือ 16 cm-1 เพื่อให้การวิเคราะห์เสร็จรวดเร็ว แต่ตอนอ่านผลพอพบพีคเปลี่ยนตำแหน่งไปเพียงแค่ 4 cm-1 ก็บอกว่ามีความแตกต่างกันแล้ว ทั้ง ๆ ที่ในกรณีนี้ถ้าเห็นความแตกต่างไม่เกิน 2 เท่าของค่า resolution ที่ตั้งเอาไว้ก็ไม่ควรด่วนสรุปว่ามีความแตกต่าง (เช่นตั้งค่า resolution เอาไว้ที่ 4 cm-1 ก็ควรต้องระวังในการแปลผลที่มีความแตกต่างที่น้อยกว่า 8 cm-1)
ความสามารถในการทำซ้ำได้ (repeatability) เป็นอีกปัจจัยหนึ่งที่บอกเราว่าเวลาใช้เครื่องมือวัดเครื่องนี้ ถ้าได้ผลแตกต่างกันไม่เกินเท่านี้ ก็อย่าพึ่งสรุปว่ามีความแตกต่างกัน ผมเคยให้นิสิตทำการวัดพื้นที่ผิวตัวอย่างตัวเร่งปฏิกิริยาด้วยเครื่องอัตโนมัติ โดยให้เขาทำการวัด 3 ครั้งด้วยกัน โดยนำตัวอย่างใส่เครื่องและวัดพื้นที่ผิวครั้งที่หนึ่ง พอเสร็จสิ้นแล้วก็ไม่ต้องเอาตัวอย่างเดิมออก ให้ใช้ตัวอย่างเดิมวัดพื้นที่ผิวอีกครั้งเป็นครั้งที่สอง การวัดสองครั้งแรกนี้เป็นการทดสอบว่าตัวเครื่องสามารถวัดตัวอย่างเดิมแล้วได้ค่าเดิมหรือไม่ พอเสร็จจากการวัดครั้งที่สองแล้วก็ให้เปลี่ยนตัวอย่างโดยเอาตัวอย่างใหม่มาจากขวดตัวเร่งปฏิกิริยาที่นำตัวอย่างแรกมา แล้วทำการวัดครั้งที่สาม การวัดครั้งสุดท้ายนี้เป็นการทดสอบว่าตัวเร่งปฏิกิริยาที่บรรจุอยู่ในขวดมีความสม่ำเสมอหรือไม่ ผลที่ได้คือผมได้ตัวเลขพื้นที่ผิวออกมา 3 ตัวเลข ทำให้ผมทราบว่าสำหรับเครื่องนี้แล้ว ถ้าได้ตัวเลขออกมาแตกต่างกันในระดับเท่านี้ ก็ไม่ควรสรุปว่าตัวอย่างมีความแตกต่างกันอย่างมีนัยสำคัญ
ที่นี้เรามาลองดูกรณีของการทดสอบความว่องไวของตัวเร่งปฏิกิริยาดูบ้าง ตัวอย่างที่ยกมาแสดงในรูปที่ ๑ นี้เป็นผลการทดลองของสาวน้อยร้อยห้าสิบเซนฯ ที่ทำการศึกษาการกำจัด NO ด้วย NH3 โดยใช้เครื่อง NOx analyser NOA-7000 วิเคราะห์ปริมาณ NO ในแก๊สออกจาก reactor ถ้าอยากรู้ที่มาที่ไปของการทดลองนี้ก็ลองไปอ่าน Memoir ปีที่ ๓ ฉบับที่ ๓๐๖ วันเสาร์ที่ ๒๘ พฤษภาคม ๒๕๕๔ เรื่อง "ทำไมถึงมี Union" ดูเอาเองก็แล้วกัน
รูปที่ ๑ ผลการทดสอบตัวเร่งปฏิกิริยาชนิดเดียวกันแต่มีการเปลี่ยน reactor ที่ใช้ทำปฏิกิริยา จากตัวเก่าที่ใช้มานานกับตัวใหม่ที่พึ่งจะใช้เป็นครั้งแรก
ก่อนหน้านี้ผมเคยให้สาวน้อยร้อยห้าสิบเซนฯ ทำการทดลอง โดยเริ่มต้นทำปฏิกิริยาจากอุณหภูมิ 100ºC ไปจนถึง 450ºC จากนั้นให้ลดอุณหภูมิระบบลงเหลือ 100ºC แล้วเริ่มทำการทดลองใหม่ไปจนถึง 450ºC อีกครั้ง โดยที่ในการทดสอบทั้งสองครั้งเป็นการใช้ตัวเร่งปฏิกิริยาตัวเดิม การทดสอบนี้ทำเพื่อตรวจดูว่าตัวเร่งปฏิกิริยามีการเสื่อมสภาพหรือไม่ ซึ่งผลการทดลองทั้งสองครั้งแม้จะไม่ให้เส้นกราฟเดียวกัน แต่ก็เกาะกลุ่มกันจนกล่าวได้ว่าในช่วงเวลาที่ทำการทดลองนั้นตัวเร่งปฏิกิริยาไม่มีการเสื่อมสภาพ
การทดลองที่กระทำโดยเปลี่ยนตัวเร่งปฏิกิริยา (ยังใช้ตัวเร่งปฏิกิริยาตัวเดิมแต่เอามาใหม่จากขวด) ก็พบว่าในการทดลองสองครั้งแม้ว่าจะใช้ตัวเร่งปฏิกิริยาจากขวดเดียวกัน ก็ไม่ได้ให้เส้นกราฟที่ซ้อนทับกัน
ผมใช้ผลการทดลองเหล่านี้เป็นตัวบอกให้ทราบถึงความสามารถในการทำซ้ำ
สำหรับผู้ที่มีการสัมผัสกับการทดลองจริงจะพบว่า มีปัจจัยต่าง ๆ แม้ว่าจะพยายามควบคุมก็ยังไม่สามารถมั่นใจว่าจะทำให้เหมือนกันทุกครั้งได้ ตัวอย่างปัจจัยเหล่านั้นเช่น
(ก) ปริมาณตัวเร่งปฏิกิริยาที่บรรจุเข้าไป ซึ่งตรงนี้ส่งผลต่อค่า conversion ได้โดยตรง ถ้าใส่ตัวเร่งปฏิกิริยาเข้าไปมากก็จะได้ค่า conversion ที่มากด้วย
(ข) เทคนิคในการบรรจุตัวเร่งปฏิกิริยาเข้าไปใน reactor ปัญหาที่อาจเกิดได้คือ channelling หรือการไหลลัดออกไปทางช่องว่างระหว่างเบดและผนัง เพราะใน fixed-bed นั้นบริเวณผนังของ reactor และเบดจะมี void fraction สูงกว่าบริเวณตอนกลางของเบด ปัญหานี้จะมากถ้าหากความสูงของเบดนั้นไม่มาก
(ค) การควบคุมอุณหภูมิ เพราะเทอร์โมคับเปิลที่เราใช้นั้นไม่ได้สัมผัสกับเบดตัวเร่งปฏิกิริยาโดยตรง เพียงแต่รองอยู่ใต้ quartz wool ที่ใช้รองเบดตัวเร่งปฏิกิริยาอีกทีหนึ่ง สิ่งที่เคยพบก็คือในการทดลองที่เริ่มจากอุณหภูมิต่ำและเพิ่มให้สูงขึ้นไปเรื่อย ๆ อุณหภูมิของเบดตัวเร่งปฏิกิริยาจะเข้าที่เร็วกว่าการทดลองที่เริ่มจากอุณหภูมิสูง และลดอุณหภูมิให้ต่ำลง ซึ่งสังเกตได้จากการที่แม้ว่าเทอร์โมคับเปิลจะบอกว่าอุณหภูมิระบบคงที่แล้ว แต่ค่าความเข้มข้นของสารด้านขาออกจาก reactor ยังคงมีการเปลี่ยนแปลงอยู่ตลอดเวลา และใช้เวลานานกว่าจะเข้าที่ ซึ่งจะพบว่าจะให้ค่าเดียวกันกับเมื่อทดลองโดยเริ่มจากอุณหภูมิต่ำไปสูง
ปัญหานี้เกิดขึ้นได้แม้ว่าเราจะเริ่มทดลองจากอุณหภูมิต่ำไปสูง ตัวอย่างเช่นเราเพิ่มอุณหภูมิจาก 250ºC ไปเป็น 300ºC แต่ในระหว่างการเพิ่มอุณหภูมินั้นระบบควบคุมไปทำให้อุณหภูมิของระบบเกินเลยไปเป็น 320ºC (เนื่องจากการเกิด overshooting) ก่อนที่จะปรับลดให้เหลือ 300ºC สิ่งที่เราจะเห็นก็คืออุณหภูมิที่เทอร์โมคับเปิลแสดงนั้นจะเข้าสู่ set point ใหม่ที่ 300ºC และคงอยู่ที่ค่านั้น ในขณะที่ความเข้มข้นของสารที่วัดได้นั้นจะยังเปลี่ยนแปลงอยู่ ทั้งนี้เนื่องจากเบดตัวเร่งปฏิกิริยายังมีอุณหภูมิสูงกว่า 300ºC และใช้เวลานานกว่าในการปรับตัวเข้าสู่สมดุลที่อุณหภูมิใหม่ ปัญหานี้จะเห็นได้ชัดเจนมากสำหรับการทดลองที่มีการเกิดปฏิกิริยาคายความร้อนในปริมาณมาก
(ง) ตำแหน่งของเบดในโซนที่มีอุณหภูมิคงที่ใน furnace เรื่องนี้เคยกล่าวไว้แล้วใน Memoir ปีที่ ๒ ฉบับที่ ๘๐ วันเสาร์ที่ ๒๑ พฤศจิกายน ๒๕๕๒ เรื่อง "การเกิดปฏิกิริยาเอกพันธ์และวิวิธพันธ์ในเบดนิ่ง"
ในกรณีของเราที่ใช้ tube furnace วางในแนวดิ่งนั้น การปิดช่องว่างระหว่าง reactor กับตัวเตาที่อยู่ทางด้านบนของตัวเตาจะส่งผลต่อบริเวณที่มีอุณหภูมิคงที่ใน furnace ได้ ทั้งนี้เพราะอากาศร้อนจะลอยตัวสูงขึ้น ถ้าเราไม่ปิดช่องว่างดังกล่าวหรือปิดเอาไว้ไม่ดี จะมีอากาศไหลเข้าทางด้านล่างของ furnace และลอยออกไปในรูปอากาศร้อนทางด้านบนของ furnace (ดูรูปที่ ๒ ประกอบ) สิ่งนี้ทำให้บริเวณที่มีอุณหภูมิคงที่ใน furnace มีบริเวณที่แคบลงและเคลื่อนตัวสูงขึ้นไปทางด้านบนของ furnace
รูปที่ ๒ การไหลของอากาศเย็นเข้าทางด้านล่างของ furnace ไปออกทางด้านบนในรูปอากาศร้อน ส่งผลต่อ temperature profile ใน furnace ถ้าหากไม่มีการควบคุมที่ดี ซึ่งปัจจัยส่วนนี้ผมเห็นว่าขึ้นกับผู้ทำการทดลองแต่ละคนเป็นอย่างมาก
ผลการทดลองในรูปที่ ๑ ยังมีอีกประเด็นหนึ่งที่ต้องนำมาพิจารณาคือ "ความชันของกราฟ" กราฟที่มีความชันสูงนั้นแม้ว่าค่าในแกน y จะแตกต่างกันมาก แต่ความคลาดเคลื่อนเพียงเล็กน้อยของค่าในแกน x ก็ทำให้ค่าในแกน y เปลี่ยนไปได้มากเช่นกัน ดังนั้นแม้ว่าค่าในแกน y จะแตกต่างกันมาก แต่เมื่อนำโอกาสที่ค่าในแกน x จะมีความคลาดเคลื่อนก็อาจไม่สามารถพูดได้เต็มปากว่าความแตกต่างนั้นมีนัยสำคัญ
ตัวอย่างเช่นกรณีของกราฟเส้นสีส้ม (reactor ใหม่) ที่อุณหภูมิประมาณ 150ºC แม้ว่าจะมีค่า NO conversion ต่ำกว่าเส้นสีน้ำเงิน (reactor เก่า) อยู่เกือบ 10% แต่ถ้าการวัดอุณหภูมิมีความคลาดเคลื่อน ±5ºC ก็จะเห็นว่าค่า NO conversion ของเส้นสีส้มจะเท่ากับของเส้นสีน้ำเงิน และเมื่อรวมโอกาสที่จะมีความคลาดเคลื่อนจากปัจจัยอื่นดังตัวอย่างที่กล่าวมาข้างต้น ทำให้ผมมีความเห็นว่าผลการทดลองทั้งสองไม่แตกต่างกัน
อีกจุดที่ต้องระวังคือการอ่านกราฟในช่วงที่ค่า conversion เข้าหา 100% หรือลดลงจาก 100% เช่นในช่วงอุณหภูมิจาก 200ºC ไปเป็น 250ºC นั้น ถ้าเราทำการทดลองโดยเพิ่มอุณหภูมิทีละ 10ºC แทนการเพิ่มทีละ 50ºC เราอาจเห็นค่า conversion ขึ้นถึง 100% ที่อุณหภูมิประมาณ 210ºC หรือ 220ºC ก็ได้
ในทำนองเดียวกันในช่วงอุณหภูมิจาก 300-350ºC ถ้าเราเพิ่มอุณหภูมิทีละ 10ºC เราก็อาจเห็นค่า conversion ลดลงต่ำกว่า 100% ที่อุณหภูมิประมาณ 310-320ºC ก็ได้
ได้เห็นคนพยายามอ่าน noise ให้เป็นพีค และได้เห็นคนพยายามบอกว่าพีคที่เห็นนั้นมันไม่มีพีค (IR) ได้เห็นคนพยายามอ่านเส้นโค้งที่ราบเรียบให้มี shoulder (UV-Vis) ล่าสุดได้เห็นคนพยายามอ่านค่า conversion ที่แตกต่างกันเพียงแค่ 1% ว่ามีความแตกต่างอย่างนัยสำคัญ (ทั้ง ๆ ที่การทดลองนั้นยังไม่เคยมีการทำซ้ำ)
แต่ถึงมีการทำการทดลองซ้ำและได้ผลการทดลองออกมาไม่เหมือนกันสักครั้ง ก็ยังเคยเห็นการหยิบเอาเฉพาะผลการทดลองเพียงผลเดียวที่เข้ากับข้อสรุปที่ตั้งไว้ก่อนหน้ามาใช้ในการสรุปผลเท่านั้น
วันอาทิตย์ที่ 17 กรกฎาคม พ.ศ. 2554
การอ่านผลการทดลองการไทเทรตกรด-เบส ตอนที่ ๒ MO Memoir : Sunday 17 July 2554
อินดิเคเตอร์
|
ช่วง pH ที่เปลี่ยนสี
|
สีที่เปลี่ยน
|
Indicator X |
3.0-4.2
|
น้ำเงิน-ส้มเหลือง
|
Indicator Y |
8.0-9.7
|
เขียว-แดง
|
วันเสาร์ที่ 16 กรกฎาคม พ.ศ. 2554
การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๓๐ เมื่อพีค GC ออกมาผิดเวลา (อีกแล้ว) MO Memoir : Saturday 16 July 2554
จะว่าไปแล้วเครื่อง GC Shimadzu 9A ที่เราใช้อยู่นี้ ให้บทเรียนในการทำงานแก่เราไว้เยอะมาก
ใน Memoir ปีที่ ๓ ฉบับที่ ๒๔๖ วันพฤหัสบดีที่ ๒๐ มกราคม ๒๕๕๔ เรื่อง "การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๑๐ เมื่อพีค GC หายไป" ผมได้กล่าวถึงปัญหาเมื่อฉีดสารเข้าไปแล้วไม่มีพีคปรากฎ
ใน Memoir ปีที่ ๓ ฉบับที่ ๒๖๕ วันอังคารที่ ๑ มีนาคม ๒๕๕๔ เรื่อง "การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๑๕ เมื่อพีค GC ออกมาผิดเวลา" ได้กล่าวถึงปัญหาพีคที่ออกมาล่าช้าไปเรื่อย ๆ และมีขนาดเล็กลงไปเรื่อย ๆ
ใน Memoir ปีที่ ๓ ฉบับที่ ๓๑๗ วันพุธที่ ๑๕ มิถุนายน ๒๕๕๔ เรื่อง "การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๒๑ เมื่อความแรงของพีค GC ลดลง" ได้กล่าวถึงปัญหาพีคที่ออกมาตรงเวลาแต่มีขนาดเล็กลง
มาคราวนี้ทราบมาจากสาวน้อยนักแสดงและสาวเทคนิคเมืองนครศรีฯ ว่าขนาดของพีคออกมาเท่าเดิม แต่เวลาที่พีคปรากฎนั้นเอาแน่เอานอนไม่ได้ บางครั้งก็เร็วขึ้น บางครั้งก็ช้าลง ทั้ง ๆ ที่เป็นการฉีดสารต่อเนื่องกันในการเปิดเครื่องครั้งเดียว
รูปที่ ๑ โครมาโทแกรมของการฉีดตัวอย่าง ๓ ครั้ง ซึ่งพบปัญหาตำแหน่งของพีคมีการเปลี่ยนแปลงแบบเอาแน่เอานอนไม่ได้ ในรูปบนนั้นจะเห็นว่าระยะห่างระหว่างพีคแต่ละพีคเปลี่ยนแปลงไป (ลองสังเกตดูคู่แรกกับคู่ที่สอง) โดยบางพีค ออกมาเร็วขึ้นในขณะที่บางพีคออกมาช้าลง ส่วนรูปล่างที่มีเฉพาะสองพีคหลังจะเห็นว่าออกมาเร็วขึ้น
สำหรับคอลัมน์เดียวกันนั้นเวลาที่สารตัวอย่างตัวใดตัวหนึ่งจะออกมาจากคอลัมน์ GC นั้นขึ้นอยู่กับ
(ก) อัตราการไหลของ carrier gas
ซึ่งถ้าไหลเร็วจะทำให้ออกมาเร็วขึ้น และถ้าไหลช้าลงก็จะออกมาช้าลง ถ้ามีการรั่วไหลก่อนเข้าคอลัมน์ก็จะเห็นออกมาช้าลงหรืออาจไม่เห็นออกมาเลย (ถ้ารั่วออกหมด) แต่ถ้ามีการรั่วไหลทางด้านขาออกก็จะเห็นออกมาที่เวลาเดิม แต่ขนาดจะลดลงหรืออาจจะไม่เห็นเลย (ถ้ารั่วออกหมด)
(ข) อุณหภูมิการทำงานของคอลัมน์
ที่อุณหภูมิสูงพีคจะออกมาเร็วกว่าที่อุณหภูมิต่ำ
ถ้าเป็นกรณีอัตราการไหลไม่คงที่ ซึ่งโดยปรกติมักจะเป็นการรั่วไหลหรือการตั้งอัตราการไหลที่ผิด เราก็ควรจะเห็นการเปลี่ยนแปลงไปในทิศทางใดทิศทางหนึ่ง ในกรณีนี้การควบคุมการไหลเป็นระบบ manual และเป็นแบบ mechanic (ไม่ใช่ electronic) มี flow meter ที่เป็นลูกลอยวัดอัตราการไหล ซึ่งลูกลอยดังกล่าวก็แสดงว่าแก๊สไหลนิ่ง
เมื่อมาตรวจสอบดูการควบคุมอุณหภูมิการทำงานของ "oven" ก็พบว่าระบบควบคุมการทำงาน (ซึ่งเป็น electronic) ทำงานเป็นปรกติ การเปลี่ยนอุณหภูมิ oven เป็นไปตามจังหวะเวลาและอัตราการเปลี่ยนแปลงที่ตั้งเอาไว้ (คือคงไว้ที่ 80ºC ก่อนเป็นเวลา 5 นาที จากนั้นเพิ่มขึ้นเป็น 230ºC ด้วยอัตราที่กำหนด)
ในกรณีนี้เนื่องจากเวลาที่พีคออกมานั้นมีทั้งเร็วขึ้นและช้าลง ผมจึงไม่สงสัยประเด็นที่ว่า carrier gas มีการรั่วไหล สิ่งที่ผมสงสัยมากกว่าคืออุณหภูมิการทำงานของ "คอลัมน์"
ช่วยสังเกตหน่อยนะว่าผมบอกว่าเวลาที่พีคจะออกมาจากคอลัมน์ขึ้นอยู่กับอุณหภูมิการทำงานของ "คอลัมน์" แต่ในการตรวจสอบนั้นผมตรวจสอบการควบคุมอุณหภูมิการทำงานของ "oven"
ผมไม่เคยเห็นเครื่อง GC เครื่องไหนมีการวัดอุณหภูมิ "คอลัมน์" แม้ว่าตัวเครื่องจะบอกว่าอุณหภูมิที่แสดงนั้นเป็นอุณหภูมิ "คอลัมน์" แต่อุณหภูมิที่วัดกันนั้นเป็นอุณหภูมิ "oven" ซึ่งก็คืออุณหภูมิของอากาศใน oven นั่นเอง และมักจะสมมุติว่าอุณหภูมิ "คอลัมน์" เท่ากับหรือใกล้เคียงกับอุณหภูมิ "oven" ถ้าสงสัยก็ลองไปดูตำแหน่งเทอร์โมคัปเปิลใน oven ดูก็ได้
อุณหภูมิของคอลัมน์นั้น ถ้าเป็นการวิเคราะห์ที่อุณหภูมิคงที่ก็มักจะไม่เห็นปัญหาใด ๆ เพราะถ้าเราเปิดเครื่องทิ้งเอาไว้นานพอ อุณหภูมิของคอลัมน์ก็จะปรับเข้าหาอุณหภูมิอากาศร้อนใน oven และคงอยู่ที่อุณหภูมินั้นตลอดการวิเคราะห์
แต่ถ้าเป็นการวิเคราะห์แบบมีการเพิ่มอุณหภูมิ (ที่เรามักเรียกกันติดปากว่า temp programmed) อุณหภูมิของคอลัมน์จะวิ่งไล่ตามอุณหภูมิของอากาศร้อนใน oven ส่วนจะวิ่งตามได้เร็วหรือช้านั้นก็ขึ้นอยู่กับ (ก) ขนาดของคอลัมน์และ (ข) ชนิดของวัสดุที่ใช้ทำคอลัมน์
คอลัมน์ขนาดเส้นผ่านศูนย์กลางใหญ่ ตัว packing ในคอลัมน์จะใช้เวลามากกว่าในการปรับอุณหภูมิเมื่อเทียบกับคอลัมน์ที่มีขนาดเส้นผ่านศูนย์กลางที่เล็กกว่า เพราะต้องใช้เวลาในการนำความร้อนจากผิวด้านนอกของคอลัมน์เข้าไปยัง packing ที่อยู่บริเวณแกนกลางของคอลัมน์
และ packing ในคอลัมน์ที่ทำจากโลหะก็จะร้อนเร็วกว่า packing ที่อยู่ในคอลัมน์ที่ทำจากแก้ว เพราะโลหะนำความร้อนได้ดีกว่าแก้ว
ในกรณีของเรานั้นเราใช้ packed column ที่ทำจากแก้ว
เราลองมาดูเหตุการณ์โดยเริ่มจากเปิดเครื่อง โดยตั้งอุณหภูมิของ oven เอาไว้ที่ 80ºC ก่อน ถ้าเราเปิดเครื่องทิ้งไว้นานพอ อุณหภูมิคอลัมน์ก็จะปรับตัวเข้าหาอุณหภูมิ oven
พอเราเริ่มทำการวิเคราะห์แบบมีการเพิ่มอุณหภูมิ เครื่องจะเพิ่มอุณหภูมิอากาศใน oven ให้เพิ่มสูงขึ้นตามอัตราที่กำหนดไว้ ความร้อนจากอากาศก็จะถ่ายเทให้กับ packing ในคอลัมน์ ทำให้อุณหภูมิคอลัมน์เพิ่มสูงขึ้นตามอุณหภูมิอากาศรอบ ๆ ความแตกต่างระหว่างอุณหภูมิอากาศรอบคอลัมน์กับอุณหภูมิที่แท้จริงของคอลัมน์นั้นจะมากหรือน้อยก็ขึ้นอยู่กับปัจจัยที่กล่าวมาข้างต้น ในกรณีของเราที่เป็นคอลัมน์แก้วนั้นความแตกต่างนี้ควรมีนัยสำคัญในระดับหนึ่ง เมื่อเครื่องเพิ่มอุณหภูมิ oven ไปจนถึง 230ºC และคงไว้ที่อุณหภูมินั้น อุณหภูมิคอลัมน์จะเพิ่มขึ้นถึง 230ºC หลังจาก oven เล็กน้อย
ทีนี้พอเราเริ่มการวิเคราะห์ใหม่ เราก็ต้องลดอุณหภูมิ oven จาก 230ºC ให้เหลือ 80ºC ก่อน ซึ่งการลดอุณหภูมินั้นอาจลดลงโดย
(ก) ปล่อยให้เครื่องจัดการของมันเอง โดยให้มันระบายความร้อนตามระบบที่มันได้รับการออกแบบ
(ข) เปิดประตู oven เลย อุณหภูมิจะได้ลดลงอย่างรวดเร็ว (ผมชอบจะใช้วิธีนี้)
การปล่อยให้เครื่องจัดการลดอุณหภูมิเองนั้น เครื่องมักจะระบายแก๊สร้อนออกและเฝ้าตรวจดูอุณหภูมิไม่ให้ลดลงไปต่ำกว่าอุณหภูมิเริ่มต้น ซึ่งในที่นี้คือ 80ºC ดังนั้นในช่วงนี้อุณหภูมิของคอลัมน์ก็จะลดลงตามอุณหภูมิของอากาศร้อนใน oven แต่อุณหภูมิของคอลัมน์จะสูงกว่าอุณหภูมิของอากาศร้อนใน oven และตัวเครื่องมักจะควบคุมไม่ให้อุณหภูมิอากาศใน oven ลดลงต่ำกว่าอุณหภูมิเริ่มต้นการวิเคราะห์
ในขณะที่อุณหภูมิของอากาศร้อนใน oven เย็นลงเข้าสู่ระดับเริ่มต้นแล้ว อุณหภูมิที่แท้จริงของคอลัมน์จะยังคง "สูงกว่า" อุณหภูมิของอากาศใน oven (ความร้อนถ่ายเทจากอุณหภูมิสูงไปอุณหภูมิต่ำนะ) ถ้าเราไม่ให้เวลานานพอก่อนจะเริ่มการวิเคราะห์ครั้งถัดไป อุณหภูมิของ packing ในคอลัมน์เมื่อเราเริ่มต้นการวิเคราะห์ครั้งที่สองนั้นจะ "สูงกว่า" อุณหภูมิของคอลัมน์ที่เราใช้ในการวิเคราะห์ครั้งแรก (คือ 80ºC)
แต่การใช้วิธีเปิดประตู oven ให้อากาศร้อนระบายออกมาและให้อากาศเย็นใหม่เข้าไปแทนที่นั้น อุณหภูมิของอากาศใน oven จะลดลงต่ำกว่าอุณหภูมิเริ่มต้นการทำงาน ด้วยวิธีนี้จะทำให้ packing ในคอลัมน์สามารถลดอุณหภูมิลงสู่อุณหภูมิเริ่มต้นการวิเคราะห์ได้ง่ายกว่าและรวดเร็วกว่า และอาจลงไปต่ำกว่าด้วย และเมื่อเราปิดประตู oven กลับ เครื่องก็จะทำการให้ความร้อนแก่ oven เพื่อปรับอุณหภูมิให้เข้าสู่อุณหภูมิเริ่มต้นการวิเคราะห์
แต่ถ้าเราปล่อยให้ packing ในคอลัมน์เย็นตัวลงต่ำกว่าอุณหภูมิเริ่มต้นการวิเคราะห์ โดยไม่ให้เวลานานพอที่จะทำให้มันปรับตัวจนมีอุณหภูมิสูงถึงอุณหภูมิเริ่มต้น แล้วเริ่มการวิเคราะห์ การวิเคราะห์ในครั้งที่สองนี้จะเริ่มที่อุณหภูมิคอลัมน์ที่ "ต่ำกว่า" อุณหภูมิของอากาศใน oven
ปัญหานี้จะลดลงถ้าหากเรารอนานเพียงพอระหว่างการวิเคราะห์แต่ละครั้ง เพื่อให้อุณหภูมิเริ่มต้นการทำงานของคอลัมน์เท่ากันทุกครั้ง และโดยปรกติก็มักจะไม่เกิดถ้าหากอากาศร้อนใน oven มีการหมุนเวียนที่ดี
ในกรณีของเรานั้นเรามีปัญหาอีกเรื่องหนึ่งเสริมเข้ามาคือพัดลมระบายความร้อนและหมุนเวียนอากาศร้อนภายใน oven ไม่ทำงาน
ตอนแรกที่เขามาปรึกษาผมนั้นผมก็ถามเขากลับไปว่าพัดลมหมุนหรือเปล่า (ผมทราบมาก่อนแล้วว่าพัดลมของ GC เครื่องนี้ค่อนข้างมีปัญหา) เขาก็ตอบกลับมาว่าไม่ทราบ ผมก็ถามกลับไปว่าได้ยินเสียงอะไรบ้างไหม คำตอบก็คือไม่ได้ยิน เนื่องจากพัดลมมีปัญหาเรื่องลูกปืน เวลาหมุนจะมีเสียงดังได้ยิน ดังนั้นถ้าเขาไม่ได้ยินเสียงอะไร ผมก็เลยคิดว่าพัดลมคงไม่หมุน และเมื่อไปตรวจสอบที่เครื่องก็พบว่าพัดลมไม่หมุนจริง ๆ
พอไปจัดการหล่อลื่นจนพัดลมหมุนได้แล้ว (ด้วยการเอา Sonax ไปฉีด) ก็ทราบมาว่าปัญหาเรื่องพีคออกมาที่เวลาเอาแน่เอานอนไม่ได้นั้นหายไปแล้ว
แต่ที่น่าเสียดายคือดูเหมือนว่าตอนนี้ตัวพัดลมจะเสียอย่างถาวร ไม่สามารถหมุนได้อีกต่อไป
ในสัปดาห์ที่ผ่านมาสาวน้อยนักแสดงก็มาถามปัญหาผมอีกว่าทำไมใช้ความดันขาเข้าคอลัมน์เพียงเล็กน้อยก็ทำให้ได้อัตราการไหล carrier gas ตามต้องการ ผมก็เลยแวะไปดูที่เครื่องและก็ถ่ายรูปข้างล่างมา
รูปที่ ๒ เกจย์ความดันแก๊สเข้าคอลัมน์คือตัวซ้ายสุด อัตราการไหลของ carrier gas คือ flow meter ตัวที่มีคาดชมพู
พอจะเดาสาเหตุได้ไหมว่าเกิดจากอะไร ถ้านึกไม่ออกก็แนะนำให้ไปดูรูปที่ ๑ ของ Memoir ฉบับที่ ๒๔๖ วันพฤหัสบดีที่ ๒๐ มกราคม ๒๕๕๔ หรือรูปที่ ๒ ของ Memoir ฉบับที่ ๒๖๕ วันอังคารที่ ๑ มีนาคม ๒๕๕๔
เห็นแล้วอยากเขกหัวเป็นการลงโทษที่สอนเท่าไรก็ไม่รู้จักจำ แต่เอาเข้าจริง ๆ คงไม่กล้าหรอก เพราะแฟนของเขาตัวบังผมมิด แถมยังมาคอยรับคอยส่งอยู่เป็นประจำเสียอีก
วันศุกร์ที่ 15 กรกฎาคม พ.ศ. 2554
การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๒๙ ปัญหา Autoclave (อีกแล้ว) MO Memoir : Friday 15 July 2554
Memoir ที่เกี่ยวข้องกับฉบับนี้คือ
ปีที่ ๓ ฉบับที่ ๒๕๕ วันจันทร์ที่ ๗ กุมภาพันธ์ ๒๕๕๔ เรื่อง "การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๑๓ อย่าด่วนสรุปเมื่อไฟตัด" และ
ปีที่ ๓ ฉบับที่ ๒๕๗ วันพุธที่ ๙ กุมภาพันธ์ ๒๕๕๔ เรื่อง "การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๑๔ การปรับอุณหภูมิเตา Autoclave" (ฉบับหลังนี้แจกจ่ายเป็นการภายใน)
เรื่องมันเริ่มจากการที่สาวเทคนิคเมืองนครบ่นทาง face book ว่าอุณหภูมิของ Autoclave มันตก ลักษณะมันเหมือนกับไม่มีไฟจ่ายเข้าระบบหรือไม่ heater ของ Autoclave มันก็เสีย
ตอนแรกเขามาบอกผมว่า variac เสียจะขอลองเปลี่ยน ผมก็เลยบอกให้ลองไปเอาตัวสำรองของกลุ่มมาใช้ ซึ่งพอต่อตัวใหม่เข้าไปผลก็ยังเหมือนเดิม
พอเช้าวันพุธพอมีเวลาหน่อยก็เลยได้ไปตรวจสอบ โดยเริ่มจากต้นทางออกไป ผมเริ่มจากการปรับตำแหน่งอุณหภูมิ set point ของเครื่อง Temp controller ให้ต่ำลงสุดก่อน จากนั้นก็เปิดเครื่อง Temp controller และ Temp indicator ซึ่งก็พบว่ามีไฟเข้าระบบทั้งสองเครื่อง
จากนั้นก็หมุนปุ่มปรับตั้งค่า set point ที่เครื่อง Temp controller ให้สูงขึ้น ซึ่งเมื่อหมุนให้ค่า set point สูงเกินกว่าค่าอุณหภูมิของ autoclave ในขณะนั้นก็สังเกตเห็นว่ามีไฟแดงที่แสดงว่ามีการส่งสัญญาณไปยัง magnetic switch เพื่อให้ magnetic switch จ่ายไฟไปยัง variac
แต่ปรากฎว่า ไม่มีเสียงแสดงการทำงานของ magnetic switch
รูปที่ ๑ การต่อสายไฟด้านหลังของ magnetic switch ที่ใช้กับ Autoclave
ตอนแรกก็คิดว่า magnetic switch เสีย เพราะมันถูกใช้งานมานานแล้ว และก็มีชิ้นส่วนเคลื่อนไหวด้วย แต่พอผมลองขยับตัว Temp controller เพื่อจะเข้าตรวจตัว magnetic switch ที่วางอยู่ข้างหลังนั้น สาวน้อยนักแสดงก็ทักขึ้นมาว่ามีสายไฟอะไรหลุดอยู่ (สายสีเขียวขั้วสีแดง ที่ลูกศรสีแดงชี้ในรูปที่ ๑)
พอไล่วงจรดูก็พบว่าสายไฟดังกล่าวมาจาก magnetic switch
ปัญหาก็คือมันหลุดออกมาจากตำแหน่งไหน ที่ผ่านมาก็ไม่เคยจำซะด้วยว่าสายไฟเส้นไหนต่อกับขั้วไหน
งานนี้ต้องใช้วิธีตรวจสอบแผนผังวงจรของ Temp controller และตรวจดูว่านอตตำแหน่งไหนที่ไม่แน่น ซึ่งจะเป็นตัวบ่งบอกว่าสายไฟที่หลุดนั้นน่าจะหลุดมาจากตำแหน่งใด
พอพบตำแหน่งที่คาดว่าสายไฟเส้นนั้นน่าจะหลุดออกมาแล้ว ก็ทดลองต่อกลับเข้าไป และเปิดเครื่องใหม่อีกครั้ง
ในที่สุดทุกอย่างก็กลับมาเหมือนเดิม
สำหรับคนที่ไม่อยู่ในเหตุการณ์เรื่องนี้มันก็ดูเหมือนไม่น่าจะมีความสำคัญที่จะจดจำใด ๆ
แต่สำหรับคนที่กำลังทำการทดลองต่อเนื่องเป็นเวลาหลายวัน แล้วอุปกรณ์มามีปัญหาระหว่างการทดลอง และต้องใช้เวลากว่า ๒ วันในการตรวจหาปัญหาและทำการแก้ไขเพื่อกู้ระบบให้กลับคืนมาดังเดิม โดยพบว่าปัญหานั้นอยู่ตรงหน้าห่างไปแค่ศอกเดียว และแก้ไขได้โดยการใช้ไขควงเพียงตัวเดียว
ไม่รู้ว่าควรจะหัวเราะหรือร้องไห้ดี
วันพุธที่ 13 กรกฎาคม พ.ศ. 2554
การทำวิทยานิพนธ์ภาคปฏิบัติ ตอนที่ ๒๘ เมื่อ base line เครื่อง chemisorb ไม่นิ่ง MO Memoir : Wednesday 13 July 2554
เมื่อวานตอนเกือบ ๔ โมงเย็นแล้วมีอาเสี่ยที่เป็นแฟนบอลทีมแมนยู (ที่ผมเรียกเขาว่าอาเสี่ยเพราะผมเชื่อว่าเงินเดือนของเขาต้องมากกว่าของผมแน่ ๆ แม้ว่าตอนนี้ทางบริษัทจะให้เขาจะเป็นนิสิตก็ตาม) มาตามผมให้ไปช่วยดูเส้น base line ของเครื่อง Chemisorb 2750 ที่รุ่นน้องคนหนึ่งกำลังจะทำการทดลองวัด CO adsorption โดยเขาบอกว่า base line มีลักษณะเต้นแกว่งไปมาเหมือนกับเกิดพีคออกมาต่อเนื่อง
สิ่งที่ผมไปเห็นที่เครื่องก็คือลักษณะเส้นสัญญาณ TCD (เส้นสีแดง) ดังแสดงในรูปที่ ๑ (ซึ่งตอนแรกแสดงเฉพาะสัญญาณ TCD เท่านั้น) ลักษณะสัญญาณดังกล่าวมีรูปแบบการแกว่งที่มีคาบและขนาดค่อนข้างแน่นอน ผมก็เลยขอดูค่าอุณหภูมิของระบบที่เครื่องวัดได้ เขาก็เลย plot เส้นกราฟอุณหภูมิ (เส้นสีน้ำเงิน) ให้ดูควบคู่กัน
รูปที่ ๑ ภาพ base line ของเครื่อง Chemisorb 2750 ที่มีปัญหาเมื่อวันอังคารที่ผ่านมา ค่าสัญญาณ TCD ที่อ่านจริงแสดงอยู่ที่มุมล่างขวาของจอตรงที่เขียนว่า TCD Reading ซึ่งถ้าดูตำแหน่งของเส้นกราฟ (สีแดง) กับแกน y ทางด้านขวาจะเห็นว่าไม่ตรงกัน สาเหตุเป็นเพราะไป set zero สัญญาณ TCD ที่แสดงบนกราฟ เช่นถ้าระดับสัญญาณจริงคือ -0.05 แล้วเราไปกำหนดให้เห็นระดับศูนย์ (ด้วยการกด set zero) ตัวเครื่องจะจำว่าถ้าสัญญาณ TCD ที่ส่งมามีค่า -0.05 ให้แสดงตำแหน่งบนกราฟที่ระดับ y = 0 ถ้าสัญญาณ TCD ที่ส่งมามีค่า 0.1 ก็จะแสดงตำแหน่งบนกราฟที่ระดับ y = 0.15 ทางด้านซ้ายของเส้นประสีเขียวเป็นสัญญาณก่อนการสั่งปรับอุณหภูมิ ส่วนทางด้านขวาเป็นสัญญาณหลังสั่งปรับเพิ่มอุณหภูมิไปที่ 30ºC
ถ้านำเส้นกราฟอุณหภูมิมาขยายสเกล (แกน y) จะเห็นว่าอุณหภูมิของระบบนั้นไม่นิ่ง มีการเพิ่มขึ้นลงเป็นจังหวะที่สอดคล้องกับการแกว่งของสัญญาณ TCD สาเหตุเกิดจากการที่ตัวควบคุมอุณหภูมิพยายามปรับอุณหภูมิให้ลดลงหา set point ที่เขาตั้งไว้ที่ 25ºC
การทำงานของอุปกรณ์ควบคุมอุณหภูมิ (temperature controller) ถ้าเราสั่งเพิ่มอุณหภูมิ อุปกรณ์ควบคุมจะสั่งจ่ายไฟฟ้าให้กับระบบ ในช่วงที่อุณหภูมิของระบบอยู่ห่างจาก set point มาก การสั่งจ่ายไฟฟ้ามักจะสั่งจ่ายแบบเต็มที่ แต่เมื่ออุณหภูมิระบบเข้าใกล้อุณหภูมิ set point การสั่งจ่ายไฟฟ้าจะลดลงเรื่อย ๆ เพื่อป้องกันไม่ให้อุณหภูมิระบบสูงเกินค่า set point (หรือไม่ให้เกินไปมากเกินไป)
ในทางกลับกันถ้าเราสั่งลดอุณหภูมิระบบ อุปกรณ์ควบคุมอุณหภูมิจะสั่งตัดการจ่ายไฟฟ้าให้กับระบบเพื่อให้อุณหภูมิระบบลดลง แต่เมื่ออุณหภูมิระบบลงลงเข้าใกล้ set point อุปกรณ์ควบคุมอุณหภูมิมักจะสั่งจ่ายไฟให้กับระบบเป็นช่วงสั้น ๆ เพื่อลดอัตราการตกของอุณหภูมิ โดยคาดหวังว่าอุณหภูมิจะลดลงเข้าสู่ค่า set point โดยไม่ลดต่ำเกินไป
แต่เนื่องจากความแปรปรวนของระบบและสิ่งแวดล้อม ทำให้การควบคุมนั้นไม่สามารถรักษาให้อยู่ที่ตำแหน่งใดตำแหน่งหนึ่งได้ สิ่งที่เราเห็นก็คือค่าอุณหภูมิของระบบจะแกว่งไปมารอบ ๆ ค่า set point ขนาดของการแกว่งนี้จะขึ้นอยู่กับการออกแบบอุปกรณ์และระบบควบคุม ในกรณีของเครื่อง Chemisorb 2750 นี้แม้ว่าการแกว่งจะมีขนาดเล็กน้อย แต่ก็มากพอที่ TCD จะตรวจจับได้ เพราะ TCD นั้นส่งสัญญาณออกมาได้เมื่อแก๊สที่ไหลผ่านมีอุณหภูมิหรืออัตราการไหลเปลี่ยนไป โดยไม่จำเป็นต้องมีองค์ประกอบเปลี่ยนไป (ลองไปอ่านเรื่อง Thermal Conductivity Detector ที่ผมเคยเขียนเอาไว้เอาเองก็แล้วกัน)
เรื่องปัญหาการควบคุมอุณหภูมิเครื่อง Chemisorb 2750 ก่อนเริ่มการฉีดแก๊สนั้นผมเคยเล่าไว้ครั้งหนึ่งแล้วใน memoir ปีที่ ๒ ฉบับที่ ๑๑๙ วันศุกร์ที่ ๑๒ กุมภาพันธ์ ๒๕๕๓ เรื่อง "การควบคุมอุณหภูมิ" สาเหตุที่เราเห็นเส้นสัญญาณ TCD มันแกว่งไปมาก็เพราะโปรแกรมมันไปขยายสเกลแกน y ให้ละเอียดยิ่งขึ้น ซึ่งขนาดของการแกว่งนี้ถ้าเทียบกับระดับสัญญาณที่มีการฉีดแก๊สตัวอย่างเข้าไปก็ต้องถือว่าไม่มีนัยสำคัญใด ๆ อีกสิ่งที่ผมบอกให้เขาทำก็คือให้ตั้ง set point ที่ตำแหน่งที่เครื่องสามารถควบคุมได้ ซึ่งก็ควรสูงกว่าอุณหภูมิห้องอย่างน้อยสัก 10ºC ไม่ใช่ไปตั้งให้มันต่ำกว่าหรือเท่ากับอุณหภูมิห้อง เพราะจะทำให้ระบบควบคุมไม่สามารถควบคุมได้ (ระบบของเราระบายความร้อนออกจากตัวอุปกรณ์สู่อากาศในห้อง ดังนั้นอุณหภูมิของระบบจึงไม่สามารถลงต่ำกว่าอุณหภูมิห้องได้
และเรื่องการอ่านกราฟนั้นก็เลยเล่าเอาไว้ใน memoir ปีที่ ๓ ฉบับที่ ๒๐๓ วันศุกร์ที่ ๑๗ กันยายน ๒๕๕๓ เรื่อง "อย่าลืมดูแกน Y" ซึ่งเหตุการณ์เมื่อวานก็เป็นการเกิดซ้ำเดิมอีก
ด้วยเหตุนี้ผมถึงได้บอกพวกคุณว่าให้หาโอกาสอ่านเรื่องเก่า ๆ ที่ผมเขียนเอาไว้ อย่างน้อยก็ให้มันผ่านตาบ้างมามีเรื่องอะไร เวลามีปัญหาเกิดขึ้นก็จะได้สามารถแก้ปัญหาเองได้โดยไม่ต้องรอให้ผมมาช่วยตรวจแก้หรือเสียเวลาไปหลายวัน (รออ่านเรื่องที่กำลังจะเขียนต่อไปก็แล้วกันก็แล้วกัน) เพราะบางปัญหานั้นมันเป็นเพียงแค่เส้นผมบังภูเขาเท่านั้นเองถ้าเรารู้สักสังเกตและจดจำ
วันอังคารที่ 12 กรกฎาคม พ.ศ. 2554
แนวทางหัวข้อการทำวิทยานิพนธ์นิสิตรหัส ๕๒ (ตอนที่ ๓๔) MO Memoir : Tuesday 12 July 2554
Memoir ฉบับนี้ออกมาทดแทน Memoir ปีที่ ๔ ฉบับที่ ๓๓๐ วันเสาร์ที่ ๙ กรกฎาคม ๒๕๕๔ เรื่อง "แนวทางหัวข้อการทำวิทยานิพนธ์นิสิตรหัส ๕๒ (ตอนที่ ๓๓)"
และขอ "ยกเลิก" วิธีการฉีดสารละลาย H2O2 ที่กล่าวไว้ใน Memoir ปีที่ ๔ ฉบับที่ ๓๓๐ วันเสาร์ที่ ๙ กรกฎาคม ๒๕๕๔ เรื่อง "แนวทางหัวข้อการทำวิทยานิพนธ์นิสิตรหัส ๕๒ (ตอนที่ ๓๓)" และให้ใช้วิธีที่กล่าวไว้ใน Memoir ฉบับนี้ (๓๓๒) แทน
Memoir ฉบับนี้เป็นการบันทึกการการปรับปรุงวิธีการฉีดสารละลาย H2O2 เข้าไปใน pressurised reactor ที่เราใช้ทำปฏิกิริยา hydroxylation หลังจากที่ได้ทดลองปฏิบัติตามที่ได้เขียนไว้ใน Memoir ฉบับที่ ๓๓๐
ส่วนที่ทำการปรับปรุงคือ ข้อ (๕) (๗) (๙) และ (๑๔) โดยข้อความที่ทำการแก้ไขและ/หรือเพิ่มเติมเข้าไปจะพิมพ์ด้วย "ตัวหนาสีน้ำเงิน"
รูปที่แสดงใน Memoir ฉบับนี้ (๓๓๒) ยังคงเป็นรูปเดียวกันกับที่แสดงไว้ในฉบับที่ ๓๓๐
รูปที่ ๑ ระบบท่อสำหรับป้อน N2 เพื่อเพิ่มความดันให้กับ autoclave และฉีดสารละลาย H2O2 เข้าไปข้างใน reactor หลังการปรับปรุงเมื่อวันศุกร์ที่ผ่านมา V1 V3 V4 และ V5 เป็น block valve ทำหน้าที่ปิด-เปิด ส่วน V2 เป็น three-way valve ทำหน้าที่เปลี่ยนทิศทางการไหล ในรูปแสดงตำแหน่ง V2 และทิศทางการไหลของแก๊ส N2 ในขณะทำการอัดความดันให้กับ autoclave โดยวาล์ว V2 อยู่ในตำแหน่งเชื่อมต่อระหว่างจุด a และ b ส่วนตำแหน่งเชื่อมต่อ b และ c จะใช้เพื่อทำการสมดุลความดันเพื่อให้ความดันเหนือผิวของเหลวเท่ากับความดันที่อยู่ใต้ผิวของเหลว ซึ่งจะทำให้ของเหลวไหลลงสู่ด้านล่างได้สะดวก
ขอเริ่มต้นจากการที่เราเติมทุกอย่างเข้าไปใน reactor (เว้นสารละลาย H2O2) และทำการต่อ reactor เข้ากับระบบโดยที่ยังไม่มีการอัดความดัน
ในขณะนี้ให้วาล์ว V1-V4 ทุกตัวอยู่ในตำแหน่ง "ปิด"
เริ่มทำการอัดความดันโดย
(๑) เปิดวาล์ว V1 และตั้งตำแหน่งวาล์ว V2 ให้แก๊สไหลเข้าทาง a และออกทาง b เพื่อให้แก๊สไนโตรเจนไหลเข้า reactor จนได้ความดันตามต้องการ ก็ให้ปิดวาล์ว V1
(๒) เปิดวาล์ว V3 เพื่อระบายแก๊สใน reactor ออก ขั้นตอนนี้ทำไปเพื่อไล่อากาศใน reactor ออก
(๓) ทำซ้ำขั้นตอน (๑) และ (๒) หลาย ๆ ครั้ง (ผมคิดว่าอย่างน้อย ๓ ครั้ง) เพื่อลด O2 ใน reactor ให้เหลือน้อยที่สุด
(๔) หลังจากไล่ O2 ครั้งสุดท้ายแล้ว ก็ทำการไล่อากาศออกจากตัวเร่งปฏิกิริยา ทำการเพิ่มความดันและทำการปั่นกวนให้ไฮโดรคาร์บอนละลายเข้าไปในเฟสน้ำจนอิ่มตัวตามขั้นตอนปฏิบัติตามปรกติ
ขั้นตอนการฉีดสารละลาย H2O2 (ที่ได้รับการปรับปรุงแล้ว)
(๕) ตรวจสอบว่าวาล์วต่าง ๆ อยู่ในตำแหน่งต่อไปนี้
- V1 V3 V4 และ V5 อยู่ในตำแหน่งปิด
- V2 อยู่ในตำแหน่งแก๊ส N2 จากถังไหลเข้า reactor (แต่ในความเป็นจริงไม่มีแก๊สไหล เพราะ V1 ปิดอยู่)
(๖) ในขณะนี้ท่อขาออกจากวาล์ว V2 (ท่อสีน้ำเงินในรูปที่ ๑) ด้านที่ต่อมายังท่อเชื่อมต่อระหว่างวาล์ว V4 และ V5 (ท่อสีชมพูในรูปที่ ๑) ควรจะมีความดันอยู่ที่ความดันบรรยากาศ
(๗) เปิดวาล์ว V4 จากนั้นใช้ syringe แทงผ่าน septum เพื่อฉีดสารละลาย H2O2 ให้เข้าไปค้างอยู่เหนือวาล์ว V5 ที่ปิดอยู่ โดยควรให้ปลายเข็ม syringe ลงไปต่ำกว่าระดับข้อต่อตัว T และระดับสารละลาย H2O2 ในท่อสีม่วงควรอยู่ต่ำกว่าข้อต่อตัว T ที่เชื่อมต่อระหว่างท่อสีม่วงและท่อสีน้ำเงิน แต่ถ้าไม่มั่นใจก็ควรยกระดับท่อสีน้ำเงินด้านที่ออกจากวาล์ว V2 ให้ยกตัวสูงขึ้นกว่าระดับข้อต่อตัว T และค่อยลดต่ำลงจนมาเชื่อมต่อเข้ากับข้อต่อตัว T
(๘) เมื่อฉีด สารละลาย H2O2 เข้าไปเรียบร้อยแล้ว ให้ถอด syringe ออก และปิดวาล์ว V4 ขณะนี้ความดันในเส้นท่อสีน้ำเงินและเหนือผิวสารละลาย H2O2 ที่อยู่ในเส้นท่อสีชมพูควรจะยังคงอยู่ที่ความดันบรรยากาศ
ขั้นตอนการป้อนสารละลาย H2O2 เข้าไปใน reactor
ดูรูปที่ ๒ ประกอบ
(๙) ปรับตำแหน่งวาล์ว V2 เพื่อเชื่อมจุดเชื่อมต่อ b และ c เข้าด้วยกัน เนื่องจากทางด้าน b จะมีความดันเท่ากับความดันใน reactor ในขณะที่ทางด้าน c มีความดันเท่ากับความดันบรรยากาศ (ดูข้อ (๘)) ดังนั้นแก๊สจะไหลจาก reactor (ตามแนวเส้นลูกศรสีเขียว) ไปตามท่อสีน้ำเงินเข้าไปในท่อสีชมพู ทำให้ความดันเหนือผิวสารละลาย H2O2 ที่อยู่ในท่อสีชมพูเท่ากับความดันใน reactor (ถ้าในท่อสีชมพูมีของเหลวอยู่สูงกว่าระดับจุดต่อท่อสีน้ำเงิน ของเหลวส่วนที่อยู่สูงกว่าระดับจุดต่อจะไม่ไหลลงข้างล่าง แต่จะค้างอยู่ระหว่างข้อต่อตัว T กับวาล์ว V4 และจะรั่วไหลออกมาถ้าทำการฉีดสารเป็นครั้งที่สอง)
(๑๐) เปิดวาล์ว V5 เนื่องจากความดันเหนือผิวสารละลาย H2O2 เท่ากับความดันใน reactor ดังนั้นผิวสารละลาย H2O2 ที่อยู่ในท่อสีชมพูจะสามารถไหลเข้าไปใน reactor ได้
รูปที่ ๒ เส้นทางการไหลของแก๊สและตำแหน่งวาล์ว V2 ในขณะที่ทำการฉีดสารละลาย H2O2 เข้าไป reactor
(๑๒) ถ้าเกรงว่าสารละลาย H2O2 ที่ฉีดเข้าไปนั้นจะไหลลงไปไม่หมด (เนื่องจากมีบางส่วนที่เปียกผิวท่อจะค้างอยู่บนผิวท่อ) ก็อาจทำการเติมน้ำกลั่นเพื่อชะล้างสารละลาย H2O2 ที่ค้างอยู่ตามผิวท่อ โดยย้อนกลับไปทำตั้งแต่ข้อ (๗) ใหม่ เพียงแต่เปลี่ยนเป็นน้ำกลั่นแทนสารละลาย H2O2
(๑๓) ในการเติมน้ำกลั่นครั้งที่สองนี้ ความดันในเส้นท่อสีน้ำเงินและสีชมพูจะเท่ากับความดันใน reactor ดังนั้นต้องระวังเมื่อเปิดวาล์ว V4 เพื่อแทง syringe แต่เนื่องจากปริมาตรของระบบท่อสีน้ำเงินและสีชมพูนั้นไม่มาก ประกอบกับไม่มีของเหลวอยู่ ดังนั้นถ้ามีการรั่วไหลในขณะที่แทง syringe ความดันก็ควรจะลดลงอย่างรวดเร็ว
(๑๔) ถ้าท่อสีชมพูของเรานั้นมีปริมาตรมากพอ ในขั้นตอนที่ (๗) นั้นเราอาจทำการเติมสารละลาย H2O2 เข้าไปก่อน จากนั้นจึงฉีดน้ำกลั่นตามเข้าไปทีหลัง โดยในการฉีดครั้งหลังนี้เวลาปัก syringe ไม่ควรปักลงไปจนสุดเหมือนครั้งแรก แต่ควรจะให้ปลายเข็มอยู่เหนือผิวสารละลาย H2O2 (แต่ก็ควรลงไปต่ำกว่าระดับข้อต่อตัว T) เพื่อให้ชั้นน้ำกลั่นลอยอยู่เหนือชั้นสารละลาย H2O2 ซึ่งเมื่อเราเปิด V5 เพื่อให้ของเหลวไหลลงไปข้างล่าง น้ำกลั่นก็จะชะสารละลาย H2O2 ที่เกาะอยู่บนผิวท่อลงไปด้วย
(๑๑) เมื่อสารละลายไหลเข้าไปจนหมดแล้วก็ให้ปิดวาล์ว V5 และปรับตำแหน่งวาล์ว V2 กลับไปยังตำแหน่งเชื่อมต่อจุด a และ b เข้าด้วยกัน (ตามรูปที่ ๑) ในขณะนี้ความดันในท่อสีน้ำเงินและท่อสีชมพูจะยังคงเท่ากับความดันใน reactor
ตัวเร่งปฏิกิริยาและการทดสอบ
- การกำจัดสีเมทิลีนบลู
- การคำนวณพื้นที่ผิวแบบ Single point BET
- การคำนวณพื้นที่ผิวแบบ Single point BET ตอนที่ ๒ ผลกระทบจากความเข้มข้นไนโตรเจนที่ใช้
- การจำแนกตำแหน่งที่เป็นกรด Brönsted และ Lewis บนพื้นผิวของแข็งด้วยเทคนิค Infrared spectroscopy และ Adsorbed probe molecules
- การจำแนกตำแหน่งที่เป็นเบส Brönsted และ Lewis บนพื้นผิวของแข็งด้วยเทคนิค Infrared spectroscopy และ Adsorbed probe molecules
- การใช้ข้อต่อสามทางผสมแก๊ส
- การใช้ Avicel PH-101 เป็น catalyst support
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๑ ขั้นตอนของการเกิดปฏิกิริยาบนตัวเร่งปฏิกิริยาวิวิธพันธ์
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๒ การดูดซับบนพื้นผิวของแข็ง
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๓ แบบจำลองไอโซเทอมการดูดซับของ Freundlich
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๔ แบบจำลองไอโซเทอมการดูดซับของ Langmuir
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๕ แบบจำลองไอโซเทอมการดูดซับของ Temkin
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๖ แบบจำลองไอโซเทอมการดูดซับของ BET
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๗ ตัวอย่างไอโซเทอมการดูดซับของ BET
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๘ ตัวอย่างไอโซเทอมการดูดซับของ BET (๒)
- การดูดซับบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๙ ตัวอย่างไอโซเทอมการดูดซับของ BET (๓)
- การเตรียมตัวอย่างตัวเร่งปฏิกิริยาแบบผงให้เป็นแผ่นบาง
- การทดสอบตัวเร่งปฏิกิริยา - ผลแตกต่างหรือไม่แตกต่าง
- การทำปฏิกิริยา ๓ เฟสใน stirred reactor
- การบรรจุ inert material ใน fixed-bed
- การปรับ WHSV
- การปั่นกวนของแข็งให้แขวนลอยในของเหลว ตอนที่ ๑ ผลของความหนาแน่นที่แตกต่าง
- การปั่นกวนของแข็งให้แขวนลอยในของเหลว ตอนที่ ๒ ขนาดของ magnetic bar กับเส้นผ่านศูนย์กลางภาชนะ
- การปั่นกวนของแข็งให้แขวนลอยในของเหลว ตอนที่ ๓ ผลของรูปร่างภาชนะ
- การผสมแก๊สอัตราการไหลต่ำเข้ากับแก๊สอัตราการไหลสูง
- การระบุชนิดโลหะออกไซด์
- การลาก smooth line เชื่อมจุด
- การเลือกค่า WHSV (Weight Hourly Space Velocity) สำหรับการทดลอง
- การวัดความเป็นกรดบนพื้นผิวของแข็ง (อีกครั้ง)
- การวัดปริมาณตำแหน่งที่เป็นกรด-เบสบนพื้นผิวของแข็งด้วย GC
- การวัดปริมาณตำแหน่งที่เป็นกรด-เบสบนพื้นผิวของแข็งด้วย GC (๒)
- การวัดพื้นที่ผิว BET
- การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๑)
- การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๒)
- การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๓)
- การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๔)
- การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๕)
- การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๖)
- การไหลผ่าน Straightening vane และโมโนลิท (Monolith)
- เก็บตกจากการประชุมวิชาการ ๒๕๕๗ ตอนที่ ๑
- เก็บตกจากการประชุมวิชาการ ๒๕๕๗ ตอนที่ ๒
- ข้อควรระวังเมื่อใช้ออกซิเจนความเข้มข้นสูง
- ข้อพึงระวังในการแปลผลการทดลอง
- ค่า signal to noise ratio ที่ต่ำที่สุด
- จลนศาสตร์การเกิดปฏิกิริยาบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๑ Volcano principle
- จลนศาสตร์การเกิดปฏิกิริยาบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๒ แบบจำลอง Langmuir
- จลนศาสตร์การเกิดปฏิกิริยาบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๓ แบบจำลอง Langmuir-Hinshelwood
- จลนศาสตร์การเกิดปฏิกิริยาบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๔ แบบจำลอง Eley-Rideal
- จลนศาสตร์การเกิดปฏิกิริยาบนพื้นผิวตัวเร่งปฏิกิริยาวิวิธพันธ์ ตอนที่ ๕ แบบจำลอง REDOX
- ตอบคำถามเรื่องการเตรียมตัวเร่งปฏิกิริยา
- ตัวเลขมันสวย แต่เชื่อไม่ได้
- ตัวเลขไม่ได้ผิดหรอก คุณเข้าใจนิยามไม่สมบูรณ์ต่างหาก
- ตัวไหนดีกว่ากัน (Catalyst)
- แต่ละจุดควรต่างกันเท่าใด
- ท่อแก๊สระบบ acetylene hydrogenation
- น้ำหนักหายได้อย่างไร
- ปฏิกิริยาการเติมไฮโดรเจนและการแทนที่ไฮโดรเจนของอะเซทิลีน
- ปฏิกิริยาอันดับ 1 หรือปฏิกิริยาอันดับ 2
- ปฏิกิริยาเอกพันธ์และปฏิกิริยาวิวิธพันธ์ในเบดนิ่ง
- ปั๊มสูบไนโตรเจนเหลวจากถังเก็บ
- ผลของแก๊สเฉื่อยต่อการเกิดปฏิกิริยา
- เผาในเตาแบบไหนดี (Calcination)
- พลังงานกระตุ้นกับปฏิกิริยาคายความร้อนในเครื่องปฏิกรณ์เบดนิ่ง
- เมื่อแก๊สรั่วที่ rotameter
- เมื่อพีคออกซิเจนของระบบ DeNOx หายไป
- เมื่อเส้น Desorption isotherm ต่ำกว่าเส้น Adsorption isotherm
- เมื่อ base line เครื่อง chemisorb ไม่นิ่ง
- เมื่อ Mass Flow Controller คุมการไหลไม่ได้
- เรื่องของสุญญากาศกับ XPS
- สแกนกี่รอบดี
- สมดุลความร้อนรอบ Laboratory scale fixed-bed reactor
- สรุปการประชุมวันพฤหัสบดีที่ ๗ มกราคม ๒๕๕๓
- เส้น Cu Kα มี ๒ เส้น
- เห็นอะไรไม่สมเหตุสมผลไหมครับ
- อย่าลืมดูแกน Y
- อย่าให้ค่า R-squared (Coefficient of Determination) หลอกคุณได้
- อุณหภูมิกับการไหลของแก๊สผ่าน fixed-bed
- อุณหภูมิและการดูดซับ
- BET Adsorption-Desorption Isotherm Type I และ Type IV
- ChemiSorb 2750 : การเตรียมตัวอย่างเพื่อการวัดพื้นที่ผิว BET
- ChemiSorb 2750 : การวัดพื้นที่ผิวแบบ Single point BET
- ChemiSorb 2750 : ผลของอัตราการไหลต่อความแรงสัญญาณ
- Distribution functions
- Electron Spin Resonance (ESR)
- GHSV หรือ WHSV
- Ion-induced reduction ขณะทำการวิเคราะห์ด้วย XPS
- MO ตอบคำถาม การทดลอง gas phase reaction ใน fixed-bed
- MO ตอบคำถาม การวัดความเป็นกรด-เบสบนพื้นผิวของแข็ง
- Monolayer หรือความหนาเพียงชั้นอะตอมเดียว
- NH3-TPD - การลาก base line
- NH3-TPD - การลาก base line (๒)
- NH3-TPD - การไล่น้ำและการวาดกราฟข้อมูล
- NH3-TPD ตอน ตัวอย่างผลการวิเคราะห์ ๑
- NH3-TPD ตอน ตัวอย่างผลการวิเคราะห์ ๒
- Physisorption isotherms Type I และ Type IV
- Scherrer's equation
- Scherrer's equation (ตอนที่ 2)
- Scherrer's equation (ตอนที่ ๓)
- Scherrer's equation (ตอนที่ ๔)
- Supported metal catalyst และ Supported metal oxide catalyst
- Temperature programmed reduction ด้วยไฮโดรเจน (H2-TPR)
- Temperature programmed reduction ด้วยไฮโดรเจน (H2-TPR) ภาค ๒
- UV-Vis - peak fitting
- XPS ตอน การแยกพีค Mo และ W
- XPS ตอน จำนวนรอบการสแกน
- XRD - peak fitting
คณิตศาสตร์สำหรับวิศวกรรมเคมี
- การแก้ปัญหาสมการเชิงอนุพันธ์สามัญปัญหาเงื่อนไขค่าเริ่มต้นด้วยระเบียบวิธี Bogacki-Shampine และ Predictor-Evaluator-Corrector-Evaluator (PECE)
- การแก้ปัญหาสมการอนุพันธ์สามัญ ด้วย ODE solvers ของ GNU Octave ตอนที่ ๑
- การแก้ปัญหาสมการอนุพันธ์สามัญ ด้วย ODE solvers ของ GNU Octave ตอนที่ ๒
- การแก้ปัญหาสมการอนุพันธ์สามัญ ด้วย ODE solvers ของ GNU Octave ตอนที่ ๓
- การแก้สมการเชิงอนุพันธ์สามัญด้วยการใช้ Integrating factor
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๑)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๑๐)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๑๑)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๑๒)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๑๓)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๒)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๓)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๔)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๕)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๖)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๗)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๘)
- การแก้สมการอนุพันธ์ด้วยฟังก์ชันพหุนาม (๙)
- การคำนวณค่าฟังก์ชันพหุนาม
- การปรับเรียบ (Smoothing) ข้อมูล (ตอนที่ ๑)
- การปรับเรียบ (Smoothing) ข้อมูล (ตอนที่ ๒)
- การปรับเรียบ (Smoothing) ข้อมูล (ตอนที่ ๓)
- การหาความสัมพันธ์ระหว่างตัวแปร x และ y
- ข้อพึงระวังในการใช้ฟังก์ชันพหุนามในการประมาณค่าในช่วง
- ข้อพึงระวังในการใช้ฟังก์ชันพหุนามในการประมาณค่าในช่วง (๒)
- ข้อพึงระวังในการใช้ฟังก์ชันพหุนามในการประมาณค่าในช่วง (๒) (pdf)
- ข้อพึงระวังในการใช้ฟังก์ชันพหุนามในการประมาณค่าในช่วง (๓)
- ข้อสอบเก่าชุดที่ ๑
- ข้อสอบเก่าชุดที่ ๒
- ค่าคลาดเคลื่อน (error)
- จำนวนที่น้อยที่สุดที่เมื่อบวกกับ 1 แล้วได้ผลลัพธ์ไม่ใช่ 1
- ใช่ว่าคอมพิวเตอร์จะคิดเลขถูกเสมอไป
- ตัวเลขที่เท่ากันแต่ไม่เท่ากัน
- ตัวอย่างการแก้ปัญหา สมการพีชคณิตไม่เชิงเส้นด้วยระเบียบวิธีนิวตัน-ราฟสัน
- ตัวอย่างการแก้ปัญหา สมการพีชคณิตไม่เชิงเส้นด้วยระเบียบวิธี Müller และ Inverse quadratic interpolation
- ตัวอย่างการแก้ปัญหา สมการพีชคณิตไม่เชิงเส้นด้วยระเบียบวิธี successive iteration
- ตัวอย่างการแก้ปัญหา สมการพีชคณิตไม่เชิงเส้นด้วยระเบียบวิธี successive iteration (pdf)
- ตัวอย่างการแก้ปัญหา สมการพีชคณิตไม่เชิงเส้นด้วย Function fzero ของ GNU Octave
- ตัวอย่างการคำนวณหาพื้นที่ใต้กราฟ ด้วยระเบียบวิธี Gaussian quadrature
- ตัวอย่างการคำนวณหาพื้นที่ใต้กราฟ ด้วยระเบียบวิธี Gaussian quadrature (pdf)
- ตัวอย่างผลของรูปแบบสมการต่อคำตอบของ ODE-IVP
- ตัวอย่างเพิ่มเติมบทที่ ๑
- ตัวอย่างเพิ่มเติมบทที่ ๒
- ตัวอย่างเพิ่มเติมบทที่ ๓
- ตัวอย่างเพิ่มเติมบทที่ ๔
- ทบทวนเรื่องการคูณเมทริกซ์
- ทบทวนเรื่อง Taylor's series
- ทศนิยมลงท้ายด้วยเลข 5 จะปัดขึ้นหรือปัดลง
- บทที่ ๑ การคำนวณตัวเลขในระบบทศนิยม
- บทที่ ๒ การแก้ปัญหาระบบสมการพีชคณิตเชิงเส้น
- บทที่ ๓ การแก้ปัญหาระบบสมการพีชคณิตไม่เชิงเส้น
- บทที่ ๔ การประมาณค่าในช่วง
- บทที่ ๕ การหาค่าอนุพันธ์
- บทที่ ๖ การหาค่าอินทิกรัล
- บทที่ ๗ การแก้ปัญหาสมการเชิงอนุพันธ์สามัญ ระบบสมการปัญหาเงื่อนไขค่าเริ่มต้น
- บทที่ ๘ การแก้ปัญหาสมการเชิงอนุพันธ์สามัญ ระบบสมการปัญหาเงื่อนไขค่าขอบเขต
- บทที่ ๙ การแก้ปัญหาสมการเชิงอนุพันธ์ย่อย
- ปฏิกิริยาคายความร้อนใน CSTR (ตอนที่ ๑)
- ปฏิกิริยาคายความร้อนใน CSTR (ตอนที่ ๒)
- เปรียบเทียบการแก้ปัญหาสมการพีชคณิตไม่เชิงเส้นด้วย solver ของ GNU Octave
- เปรียบเทียบการแก้ Stiff equation ด้วยระเบียบวิธี Runge-Kutta และ Adam-Bashforth
- เปรียบเทียบระเบียบวิธี Runge-Kutta
- เปรียบเทียบ Gauss elimination ที่มีและไม่มีการทำ Pivoting
- เปรียบเทียบ Gauss elimination ที่มีและไม่มีการทำ Pivoting (Spreadsheet)
- ฟังก์ชันแกมมา (Gamma function) และ ฟังก์ชันเบสเซล (Bessel function)
- เมื่อ 1 ไม่เท่ากับ 0.1 x 10
- ระเบียบวิธี Implicit Euler และ Crank-Nicholson กับ Stiff equation
- เลขฐาน ๑๐ เลขฐาน ๒ จำนวนเต็ม จำนวนจริง
- Distribution functions
- LU decomposition ร่วมกับ Iterative improvement
- LU decomposition ร่วมกับ Iterative improvement (pdf)
- LU decomposition ร่วมกับ Iterative improvement (Spreadsheet)
- Machine precision กับ Machine accuracy
เคมีสำหรับวิศวกรเคมี
- กรด-เบส : อ่อน-แก่
- กรด-เบส : อะไรควรอยู่ในบิวเรต
- กราฟการไทเทรตกรดกำมะถัน (H2SO4)
- กราฟการไทเทรตกรดกำมะถัน (H2SO4) ตอนที่ ๒
- กราฟการไทเทรตกรดที่ให้โปรตอนได้ ๒ ตัว
- กราฟการไทเทรตกรดที่ให้โปรตอนได้ ๓ ตัว
- กราฟการไทเทรตกรดไฮโปคลอรัส (HOCl)
- กราฟอุณหภูมิการกลั่นของน้ำมันเบนซิน (Gasoline distillation curve)
- กลิ่นกับอันตรายของสารเคมี
- การกำจัดสีเมทิลีนบลู
- การเกิดปฏิกิริยาเคมี
- การเจือจางไฮโดรคาร์บอนในน้ำ
- การใช้ pH probe
- การใช้ Tetraethyl lead นอกเหนือไปจากการเพิ่มเลขออกเทน
- การดูดกลืนคลื่นแสงของแก้ว Pyrex และ Duran
- การดูดกลืนแสงสีแดง
- การเตรียมสารละลายด้วยขวดวัดปริมาตร
- การเตรียมหมู่เอมีนและปฏิกิริยาของหมู่เอมีน (การสังเคราะห์ฟีนิลบิวตาโซน)
- การทำน้ำให้บริสุทธิ์สำหรับห้องปฏิบัติการ
- การทำปฏิกิริยาของโพรพิลีนออกไซด์ (1,2-Propylene oxide) ตอนที่ ๑
- การทำปฏิกิริยาของโพรพิลีนออกไซด์ (1,2-Propylene oxide) ตอนที่ ๒
- การทำปฏิกิริยาของหมู่ Epoxide ในโครงสร้าง Graphene oxide
- การทำปฏิกิริยาต่อเนื่องของผลิตภัณฑ์
- การเทของเหลวใส่บิวเรต
- การน๊อคของเครื่องยนต์แก๊สโซลีน และสารเพิ่มเลขออกเทนของน้ำมัน
- การเปลี่ยนพลาสติกเป็นน้ำมัน
- การเปลี่ยนเอทานอล (Ethanol) ไปเป็นอะเซทัลดีไฮด์ (Acetaldehyde)
- การเรียกชื่อสารเคมี
- การลดการระเหยของของเหลว
- การละลายของแก๊สในเฮกเซน (Ethylene polymerisation)
- การละลายเข้าด้วยกันของโมเลกุลมีขั้ว-ไม่มีขั้ว
- การวัดความเป็นกรดบนพื้นผิวของแข็ง (อีกครั้ง)
- การวัดปริมาณ-ความแรงของตำแหน่งที่เป็นกรดบนพื้นผิว
- การวัดปริมาณตำแหน่งที่เป็นกรด-เบสบนพื้นผิวของแข็งด้วย GC
- การวัดปริมาตรของเหลว
- การหาความเข้มข้นสารละลายมาตรฐานกรด
- การหาจุดสมมูลของการไทเทรตจากกราฟการไทเทรต
- การอ่านผลการทดลองการไทเทรตกรด-เบส
- การอ่านผลการทดลองการไทเทรตกรด-เบส (ตอนที่ ๒)
- การอ่านผลการทดลองการไทเทรตกรด-เบส (ตอนที่ ๓)
- แก๊สมัสตาร์ดกับกลิ่นทุเรียน
- ข้อควรระวังเมื่อใช้ออกซิเจนความเข้มข้นสูง
- คลื่นแม่เหล็กไฟฟ้ากับงานเคมีวิเคราะห์
- ความกระด้าง (Hardness) ของน้ำกับปริมาณของแข็งทั้งหมด ที่ละลายอยู่ (Total Dissolved Solid - TDS)
- ความดันกับการเกิดปฏิกิริยาเคมี
- ความเป็นกรดของหมู่ไฮดรอกซิล (Hydroxyl group) ตอนที่ ๑
- ความเป็นกรดของหมู่ไฮดรอกซิล (Hydroxyl group) ตอนที่ ๒
- ความเป็นกรดของอัลฟาไฮโดรเจนอะตอม (alpha-Hydrogen atom) ตอน กรดบาร์บิทูริก (Barbituric acid)
- ความเป็นกรดของอัลฟาไฮโดรเจนอะตอม (alpha-Hydrogen atoms)
- ความเป็นขั้วบวกของอะตอม C และการทำปฏิกิริยาของอีพิคลอโรไฮดริน (epichlorohydrin)
- ความเป็นไอออนิก (Percentage ionic character)
- ความสัมพันธ์ระหว่างสีกับชนิดและปริมาณธาตุ
- ความสำคัญของเคมีวิเคราะห์และเคมีอินทรีย์ในงานวิศวกรรมเคมี
- ความเห็นที่ไม่ลงรอยกับโดเรมี่
- ค้างที่ปลายปิเปตไม่เท่ากัน
- คำตอบของ Cubic equation of state
- จากกลีเซอรอล (glycerol) ไปเป็นอีพิคลอโรไฮดริน (epichlorohydrin)
- จากเบนซาลดีไฮด์ (Benzaldehyde) ไปเป็นกรดเบนซิลิก (Benzilic acid)
- จากโอเลฟินส์ถึงพอลิอีเทอร์ (From olefins to polyethers)
- จาก Acetone เป็น Pinacolone
- จาก Alkanes ไปเป็น Aramids
- จาก Aniline ไปเป็น Methyl orange
- จาก Benzene ไปเป็น Butter yellow
- จาก Hexane ไปเป็น Nylon
- จาก Toluene และ m-Xylene ไปเป็นยาชา
- ดำหรือขาว
- ตกค้างเพราะเปียกพื้นผิว
- ตอบคำถามแบบแทงกั๊ก
- ตอบคำถามให้ชัดเจนและครอบคลุม
- ตำราสอนการใช้ปิเปตเมื่อ ๓๓ ปีที่แล้ว
- ไตรเอทานอลเอมีน (Triethanolamine)
- ถ่านแก๊ส หินแก๊ส แก๊สก้อน
- ทอดไข่เจียวให้อร่อยต้องใช้น้ำมันหมู
- ทำไมน้ำกระด้างจึงมีฟอง
- ที่แขวนกล้วย
- เท่ากับเท่าไร
- โทลูอีน (Toluene)
- ไทโอนีลคลอไรด์ (Thionyl chloride)
- นานาสาระเคมีวิเคราะห์
- น้ำด่าง น้ำอัลคาไลน์ น้ำดื่ม
- น้ำดื่ม (คิดสักนิดก่อนกดแชร์ เรื่องที่ ๑๑)
- น้ำตาลทราย ซูคราโลส และยาคุมกำเนิดสำหรับผู้ชาย
- น้ำบริสุทธิ์ (Purified water)
- ไนโตรเจนเป็นแก๊สเฉื่อยหรือไม่
- บีกเกอร์ 250 ml
- แบบทดสอบก่อนเริ่มเรียนวิชาเคมีสำหรับนิสิตวิศวกรรมเคมี
- ปฏิกิริยาการเติมไฮโดรเจนและการแทนที่ไฮโดรเจนของอะเซทิลีน (Hydrogenation and replacement of acetylenic hydrogen)
- ปฏิกิริยาการผลิต Vinyl chloride
- ปฏิกิริยาการออกซิไดซ์
- ปฏิกิริยา alpha halogenation และการสังเคราะห์ tertiary amine
- ปฏิกิริยา ammoxidation หมู่เมทิลที่เกาะอยู่กับวงแหวนเบนซีน
- ปฏิกิริยา Benzene alkylation
- ปฏิกิริยา Dehydroxylation
- ปฏิกิริยา Electrophilic substitution ของ m-Xylene
- ปฏิกิริยา Nucleophilic substitution ของสารประกอบ Organic halides
- ประโยชน์ของ Nitric oxide ในทางการแพทย์
- ปัญหาการสร้าง calibration curve ของ ICP
- ปัญหาการหาความเข้มข้นสารละลายกรด
- ปัญหาของไฮโดรคาร์บอนไม่อิ่มตัว
- โป้ง ชี้ กลาง นาง ก้อย
- ผลของค่าพีเอชต่อสีของสารละลายเปอร์แมงกาเนต
- ผลของอุณหภูมิต่อการแทนที่ตำแหน่งที่ 2 บนวงแหวนเบนซีน
- ฝึกงานภาคฤดูร้อน ๒๕๕๓ ตอนที่ ๑ อธิบายศัพท์
- พีคเหมือนกันก็แปลว่ามีหมู่ฟังก์ชันเหมือนกัน
- ฟลูออรีนหายไปไหน
- ฟอสฟอรัสออกซีคลอไรด์ (Phosphorus Oxychloride)
- ฟีนอล แอซีโทน แอสไพริน พาราเซตามอล สิว โรคหัวใจ และงู
- มุมมองที่ถูกจำกัด
- เมทานอลกับเจลล้างมือ
- เมื่อคิดในรูปของ ...
- เมื่อตำรายังพลาดได้ (Free radical polymerisation)
- เมื่อน้ำเพิ่มปริมาตรเองได้
- เมื่อหมู่คาร์บอนิล (carbonyl) ทำปฏิกิริยากันเอง
- รังสีเอ็กซ์
- เรื่องของสไตรีน (คิดสักนิดก่อนกด Share เรื่องที่ ๑)
- แลปการไทเทรตกรด-เบส ภาคการศึกษาต้น ปีการศึกษา ๒๕๖๐
- ศัพท์เทคนิค-เคมีวิเคราะห์
- สรุปคำถาม-ตอบการสอบวันศุกร์ที่ ๓ เมษายน ๒๕๕๒
- สีหายไม่ได้หมายความว่าสารหาย
- เสถียรภาพของอนุมูลอิสระ (๑)
- เสถียรภาพของอนุมูลอิสระ (๒)
- เสถียรภาพของอนุมูลอิสระ (๓)
- หมู่ทำให้เกิดสี (chromophore) และหมู่เร่งสี (auxochrome)
- หลอกด้วยข้อสอบเก่า
- อะเซทิลีน กลีเซอรีน และไทออล
- อะโรมาติก : การผลิต การใช้ประโยชน์ และปัญหา
- อัลคิลเอมีน (Alkyl amines) และ อัลคิลอัลคานอลเอมีน (Alkyl alkanolamines)
- อีเทอร์กับการเกิดสารประกอบเปอร์ออกไซด์
- อุณหภูมิ อัตราการเกิดปฏิกิริยา สมดุลเคมี
- เอา 2,2-dimethylbutane (neohexane) ไปทำอะไรดี
- เอาเบนซีนกับเอทานอลไปทำอะไรดี
- เอา isopentane ไปทำอะไรดี
- เอา maleic anhydride ไปทำอะไรดี
- เอา pentane ไปทำอะไรดี
- ไอโซเมอร์ (Isomer)
- ไฮโดรเจนเปอร์ออกไซด์กับพอลิโพรพิลีน
- Acentric factor
- Aldol condensation กับ Cannizzaro reaction
- Aldol condesation ระหว่าง Benzaldehyde กับ Acetone
- A-Level เคมี ปี ๖๖ ข้อพอลิเอทิลีน
- Beilstein test กับเตาแก๊สที่บ้าน
- Benzaldehyde กับปฏิกิริยา Nitroaldol
- BOD และ COD
- BOD หรือ DO
- Carbocation - การเกิดและเสถียรภาพ
- Carbocation - การทำปฏิกิริยา
- Carbocation ตอนที่ ๓ การจำแนกประเภท-เสถียรภาพ
- Chloropicrin (Trichloronitromethane)
- Compressibility factor กับ Joule-Thomson effect
- Conjugated double bonds กับ Aromaticity
- Cubic centimetre กับ Specific gravity
- Dehydration, Esterification และ Friedle-Crafts Acylation
- Electrophilic addition ของอัลคีน
- Electrophilic addition ของอัลคีน (๒)
- Electrophilic addition ของ conjugated diene
- Electrophilic substitution ตำแหน่งที่ 1 บนวงแหวนเบนซีน
- Electrophilic substitution ตำแหน่งที่ 2 บนวงแหวนเบนซีน ตอน ผลของอุณหภูมิการทำปฏิกิริยา
- Electrophilic substitution ตำแหน่งที่ 3 บนวงแหวนเบนซีน
- Electrophilic substitution ตำแหน่งที่ 3 บนวงแหวนเบนซีน ตอน การสังเคราะห์ 2,4-Dinitrophenol
- Esterification of hydroxyl group
- Gibbs Free Energy กับการเกิดปฏิกิริยาและการดูดซับ
- Halogenation ของ alkane
- Halogenation ของ alkane (๒)
- HCl ก่อน ตามด้วย H2SO4 แล้วจึงเป็น HNO3
- I2 ในสารละลาย KI กับไฮโดรคาร์บอนอิ่มตัว
- Infrared spectrum interpretation
- Interferometer
- IR spectra ของโทลูอีน (Toluene) เอทิลเบนซีน (Ethylbenzene) โพรพิลเบนซีน (Propylbenzene) และคิวมีน (Cumene)
- IR spectra ของเบนซีน (Benzene) และไซลีน (Xylenes)
- IR spectra ของเพนทีน (Pentenes)
- Kjeldahl nitrogen determination method
- Malayan emergency, สงครามเวียดนาม, Seveso และหัวหิน
- MO ตอบคำถาม การวัดความเป็นกรด-เบสบนพื้นผิวของแข็ง
- Nucleophile กับ Electrophile
- PAT2 เคมี ปี ๖๕ ข้อการไทเทรตกรดเบส
- Peng-Robinson Equation of State
- Phenol, Ether และ Dioxin
- Phospharic acid กับ Anhydrous phosphoric acid และ Potassium dioxide
- pH Probe
- Picric acid (2,4,6-Trinitrophenol) และ Chloropicrin
- PV diagram กับการอัดแก๊ส
- Pyrophoric substance
- Reactions of hydroxyl group
- Reactions of hydroxyl group (ตอนที่ ๒)
- Redlich-Kwong Equation of State
- Redlich-Kwong Equation of State (ตอนที่ ๒)
- Soave-Redlich-Kwong Equation of State
- Standard x-ray powder diffraction pattern ของ TiO2
- Sulphur monochloride และ Sulphur dichloride
- Thermal cracking - Thermal decomposition
- Thiols, Thioethers และ Dimethyl thioether
- Van der Waals' Equation of State
- Vulcanisation
ประสบการณ์ Gas chromatograph/Chromatogram
- 6 Port sampling valve
- กระดาษความร้อน (thermal paper) มี ๒ หน้า
- การแก้ปัญหา packing ในคอลัมน์ GC อัดตัวแน่น
- การฉีดแก๊สเข้า GC ด้วยวาล์วเก็บตัวอย่าง
- การฉีดตัวอย่างที่เป็นของเหลวด้วย syringe
- การฉีด GC
- การใช้ syringe ฉีดตัวอย่างที่เป็นแก๊ส
- การดึงเศษท่อทองแดงที่หักคา tube fitting ออก
- การตั้งอุณหภูมิคอลัมน์ GC
- การติดตั้ง Integrator ให้กับ GC-8A เพื่อวัด CO2
- การเตรียมคอลัมน์ GC ก่อนการใช้งาน
- การปรับความสูงพีค GC
- การวัดปริมาณไฮโดรเจนด้วย GC-TCD
- ข้อสังเกตเกี่ยวกับ FPD (ตอนที่ ๒)
- ข้อสังเกตเกี่ยวกับ FPD (Flame Photometric Detector)
- โครมาโทกราฟแยกสารได้อย่างไร
- ชนิดคอลัมน์ GC
- ตรวจโครมาโทแกรม ก่อนอ่านต้วเลข
- ตัวอย่างการแยกพีค GC ที่ไม่เหมาะสม
- ทำความรู้จักกับ Chromatogram ตอนที่ ๑
- ทำความรู้จักกับ Chromatogram ตอนที่ ๒
- ทำความรู้จักกับ Chromatogram ตอนที่ ๓
- ทำความรู้จักกับ Chromatogram ตอนที่ ๔
- ทำความรู้จักกับ Chromatogram ตอนที่ ๕
- ทำความรู้จักกับ Chromatogram ตอนที่ ๖
- ทำไมพีคจึงลากหาง
- ผลกระทบของน้ำที่มีต่อการวัดคาร์บอนไดออกไซด์ ตอนที่ ๑
- ผลกระทบของน้ำที่มีต่อการวัดคาร์บอนไดออกไซด์ ตอนที่ ๒
- ผลกระทบของน้ำที่มีต่อการวัดคาร์บอนไดออกไซด์ ตอนที่ ๓
- พีคที่เกิดจากปฏิกิริยาระหว่างน้ำกับ packing ในคอลัมน์ GC
- พีคประหลาดจากการใช้อากาศน้อยไปหน่อย
- มันไม่เท่ากันนะ
- เมื่อความแรงของพีค GC ลดลง
- เมื่อจุดไฟ FID ไม่ได้
- เมื่อพีค GC หายไป
- เมื่อพีค GC ออกมาผิดเวลา
- เมื่อพีค GC ออกมาผิดเวลา(อีกแล้ว)
- เมื่อเพิ่มความดันอากาศให้กับ FID ไม่ได้
- เมื่อ GC ถ่านหมด
- เมื่อ GC มีพีคประหลาด
- ลากให้ผ่านหรือไม่ให้ผ่าน
- สัญญาณจาก carrier gas รั่วผ่าน septum
- สารพัดปัญหา GC
- สิ่งปนเปื้อนในน้ำ DI
- สิ่งปนเปื้อนในน้ำ DI (ตอนที่ ๒)
- Chromatograph principles and practices
- Flame Ionisation Detector
- GC-2014 ECD & PDD ตอนที่ ๗ ข้อสังเกตเกี่ยวกับ ECD (Electron Capture Detector)
- GC detector
- GC - peak fitting ตอนที่ ๑ การหาพื้นที่พีคที่เหลื่อมทับ
- GC principle
- LC detector
- LC principle
- MO ตอบคำถาม การแยกพีค GC ด้วยโปรแกรม fityk
- MO ตอบคำถาม สารพัดปัญหาโครมาโทแกรม
- Relative Response Factors (RRF) ของสารอินทรีย์ กับ Flame Ionisation Detector (FID)
- Thermal Conductivity Detector
- Thermal Conductivity Detector ภาค 2
สินค้าที่ใช้ได้สองทาง (Dual-Use Items - DUI)
- การก่อการร้ายด้วยแก๊สซาริน (Sarin) ในรถไฟใต้ดินกรุงโตเกียว MO Memoir : Friday 6 September 2567
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๐ ฟังก์ชันเข้ารหัสรีโมทเครื่องปรับอากาศ
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๑ License key
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๒ สารเคมี (Chemicals)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๓ ไม่ตรงตามตัวอักษร (สารเคมี)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๔ ไม่ตรงตามตัวอักษร (Heat exchanger)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๕ Sony PlayStation
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๖ เส้นใยคาร์บอน (Carbon fibre)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๗ The Red Team : Centrifugal separator
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๘ The Blue Team : Spray drying equipment
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑๙ เครื่องสลายนิ่วในไตด้วยคลื่นกระแทก (Lithotripter)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๑ ตัวเก็บประจุ (Capacitor)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๒๐ เรซินแลกเปลี่ยนไอออน (Ion-exchange resin)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๒๑ ไม่ตรงตามตัวอักษร (Aluminium tube)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๒๒ เครื่องกระตุกหัวใจด้วยไฟฟ้า (Defibrillator)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๒๓ เครื่องยนต์ดีเซล
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๒ เครื่องแลกเปลี่ยนความร้อน (Heat Exchanger)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๓ เครื่องแปลงความถี่ไฟฟ้า (Frequency Changer)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๔ อุปกรณ์เข้ารหัส (Encoding Device)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๕ Insulated Gate Bipolar Transistor (IGBT)
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๖ Toshiba-Kongsberg Incident
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๗ รายงานผลการทดสอบอุปกรณ์
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๘ Drawing อุปกรณ์
- การวินิจฉัยการเข้าข่ายสินค้าที่ใช้ได้สองทาง ตัวอย่างที่ ๙ ซอร์ฟแวร์ควบคุมการทำงานอุปกรณ์
- เครื่องแลกเปลี่ยนความร้อนสำหรับเตาปฏิกรณ์นิวเคลียร์
- แคลเซียม, แมกนีเซียม และบิสมัท กับการผลิตอาวุธทำลายล้างสูง
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๑
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๑๐
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๒
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๓
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๔
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๕
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๖
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๗
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๘
- สินค้าที่ใช้ได้สองทาง (Dual-Use Items : DUI) ตอนที่ ๙
API 2000 Venting Atmospheric and Low-Pressure Storage Tanks
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑๐)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑๑)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑๒)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑๓)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑๔)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑๕)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๑๖)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๒)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๓)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๔)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๕)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๖)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๗)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๘)
- API 2000 Venting Atmospheric and Low-Pressure Storage Tanks (ตอนที่ ๙)
โน๊ตเพลง
- "กำลังใจ" และ "ถึงเพื่อน"
- "ใกล้รุ่ง" และ "อาทิตย์อับแสง"
- "คนดีไม่มีวันตาย" "หนึ่งในร้อย (A Major) และ "น้ำตาแสงใต้ (A Major)"
- "ความฝันอันสูงสุด" และ "ยามเย็น"
- "จงรัก" และ "ความรักไม่รู้จบ"
- "ฉันยังคอย" และ "ดุจบิดามารดร"
- "ชาวดง" และ "ชุมนุมลูกเสือไทย"
- "ตัดใจไม่ลง" และ "ลาสาวแม่กลอง"
- "เติมใจให้กัน" และ "HOME"
- "แต่ปางก่อน" "ความรักไม่รู้จบ" "ไฟเสน่หา" และ "แสนรัก"
- "ทะเลใจ" "วิมานดิน" และ "เพียงแค่ใจเรารักกัน"
- "ที่สุดของหัวใจ" "รักล้นใจ" และ "รักในซีเมเจอร์"
- "ธรณีกรรแสง" และ "Blowin' in the wind"
- "นางฟ้าจำแลง" "อุษาสวาท" และ "หนี้รัก"
- "แผ่นดินของเรา" และ "แสงเทียน"
- "พรปีใหม่" และ "สายฝน"
- "พี่ชายที่แสนดี" "หลับตา" และ "หากรู้สักนิด"
- เพลงของโรงเรียนเซนต์คาเบรียล
- "มหาจุฬาลงกรณ์" "ยูงทอง" และ "ลาภูพิงค์"
- "ยังจำไว้" "บทเรียนสอนใจ" และ "ความในใจ"
- "ร่มจามจุรี" และ "เงาไม้"
- "ลมหนาว" และ "ชะตาชีวิต"
- "ลองรัก" และ "วอลซ์นาวี"
- "ลาแล้วจามจุรี"
- "วันเวลา" และ "โลกทั้งใบให้นายคนเดียว"
- "วิหคเหินลม" และ "พรานทะเล"
- "สายชล" และ "เธอ"
- "สายใย" และ "ความรัก"
- "สายลม" และ "ไกลกังวล"
- "สายลมเหนือ" และ "เดียวดายกลางสายลม"
- "หน้าที่ทหารเรือ" และ "ทหารพระนเรศวร"
- "หนึ่งในร้อย" และ "น้ำตาแสงใต้"
- "หากันจนเจอ" และ "ลมหายใจของกันและกัน"