แสดงบทความที่มีป้ายกำกับ เอทิลีน แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ เอทิลีน แสดงบทความทั้งหมด

วันจันทร์ที่ 5 กุมภาพันธ์ พ.ศ. 2567

เพลิงไหม้และการระเบิดที่ Steam Cracker Unit, Czech Republic 2558 (2015) ตอนที่ ๓ การวิเคราะห์สาเหตุ MO Memoir : Monday 5 February 2567

วันที่ ๑๒ เมษายน ปีค.ศ. ๑๘๓๑ (พ.ศ. ๒๓๗๔ หรือช่วงรัชกาลที่ ๓ ของไทย) ระหว่างที่ทหารอังกฤษ ๗๔ เดินเป็นจังหวะพร้อมกันข้ามสะพาน Broughton Suspension Bridge ซึ่งเป็นสะพานแขวนชนิด Iron chain suspension bridge มีความรู้สึกว่าสะพานสั่นตามจังหวะการเดินที่ทำให้รู้สึกสนุก ก็เลยย้ำจังหวะการเดินเข้าไปอีก ผลก็คือสะพานดังกล่าวพังลงมา แม้ว่าเหตุการณ์ครั้งนั้นจะไม่มีผู้เสียชีวิต แต่จากนั้นมาเวลากองทหารเดินข้ามสะพานแขวนก็มีคำสั่งให้ต้องเดินแบบ "Break step" คือห้ามเดินเข้าจังหวะกัน

แต่เหตุการณ์ที่ขึ้นชื่อและเป็นที่รู้จักกันแพร่หลายกว่าน่าจะเป็นกรณีของสะพานแชวน Tacoma ที่พังลงเพราะลมที่พัดผ่านนั้นทำให้จังหวะการแกว่งของสะพานตรงกับความถี่การสั่นตามธรรมชาติของสะพาน การแกว่งก็เลยรุนแรงขึ้นจนทำให้สะพานพังลงมาในวันที่ ๑ กรกฎาคม ปีค.ศ. ๑๙๔๐ (พ.ศ. ๒๔๘๓) เหตุการณ์ช่วงที่สะพานพังลงมามีการบันทึกภาพยนต์ไว้ จึงทำให้เป็นที่รู้จักกันแพร่หลาย

บทความต้นฉบับของเรื่องการระเบิดที่ Steam Cracker Unit นี้มีการวิเคราะห์สาเหตุที่ทำให้เกิดความเสียหายในแต่ละจุดว่าเกิดจากอะไร แต่ใน Memoir นี้จะขอนำมาเฉพาะสิ่งที่เห็นว่าเป็นต้นตอของความเสียหายอื่น ๆ ที่เกิดตามมา ซึ่งก็คือทำไมอัตราการไหลของน้ำหล่อเย็นจึงลดลง และทำไม pressure relief valve จึงเกิดการ chattering และการ chattering นี้นำไปสู่การรั่วไหลได้อย่างไร ซึ่งการสอบสวนพบว่ามีสาเหตุที่เหมือนกับทั้งสองกรณีที่กล่าวมาข้างต้น

เริ่มต้นด้วยรูปที่ ๑๕ ที่เป็นเหตุการณ์ก่อนที่น้ำหล่อเย็นจะขาดหายไปจนกระทั่งกลับมาสู่ระดับเดิม สำหรับแผนผังหน่วยผลิตนั้นขอให้ดูในบทความตอนที่ ๒ ของเรื่องนี้

รูปที่ ๑๕ เหตุการณ์ช่วงก่อนที่น้ำหล่อเย็นจะขาดหายไปจนกระทั่งกลับมาสู่ระดับเดิม

ช่วงก่อนเกิดเหตุการณ์ โรงงานเดินเครื่องที่กำลังผลิตประมาณ 90-93% โดยมีกำลังการผลิตเอทิลีนประมาณ 56-58 ตันต่อชั่วโมง หอกลั่นแยกโพรเพน-โพรพิลีนมีเครื่องควบแน่น 4 เครื่อง (EA-125 A ถึง D) ทำงานพร้อมกัน โดยใช้น้ำหล่อเย็นเป็นแหล่งระบายความร้อน

ระบบน้ำหล่อเย็นที่จ่ายให้กับเครื่องควบแน่นดังกล่าวเป็นท่อใต้ดินมีทั้งหมด 4 เส้นท่อ ณ เวลาหนึ่งจะมีการดึงน้ำหล่อเย็นมาใช้อย่างน้อยจาก 1 เส้นท่อ โดยอีก 1 เส้นท่อเป็นเส้นสำรอง โดยช่วงก่อนเกิดเหตุนั้นกำลังใช้น้ำจากเส้นท่อที่ 3 และ 4 อยู่

ก่อนเกิดเหตุการณ์ อุปกรณ์วัดการไหลของเส้นท่อที่ 3 ไม่ทำงาน จึงได้มีการซ่อมแซมและซ่อมบำรุง การวางแผนตรวจสอบการทำงานกำหนดให้มีในวันที่ ๑๓ สิงหาคม ค.ศ. ๒๐๑๕ ขั้นตอนการทำงานเพื่อตรวจสอบมิเตอร์วัดการไหลที่ได้ตกลงกันไว้ก็คือ จะใช้เฉพาะเส้นท่อที่ 3 เท่านั้นโดยจะปิดน้ำจากเส้นท่อที่ 4 เป็นการชั่วคราว ให้มีเฉพาะน้ำจากเส้นท่อที่ 3 ที่ไหลเข้าเครื่องควบแน่น ในช่วงระหว่างเวลา 8.05 ถึง 8.15 น ได้ทำการเปิดวาล์วน้ำของเส้นท่อที่ 3 ที่อยู่ในพื้นที่หน่วย Steam Cracker ตามด้วยการปิด (หรือปิดบางส่วน) วาล์วน้ำของเส้นท่อที่ 4 ที่หน่วย Steam Cracker โดยที่วาล์วของเส้นท่อที่ 3 ที่ "Battery Limit" ไม่ถูกเปิด ("Battery Limit" คือขอบเขตความรับผิดชอบระหว่างสองหน่วยงาน) สิ่งที่เกิดตามมาคือมีการขัดจังหวะการไหลของน้ำหล่อเย็นไปยังส่วนต่าง ๆ ของหน่วย Setam Cracker ซึ่งรวมทั้งเครื่องควบแน่นโพรพิลีนด้วย อัตราการไหลของน้ำหล่อเย็นลดลงจาก 12,000 m3/h ลงเหลือประมาณ 6,600 m3/h เป็นเวลานานประมาณ 13 นาที ก่อนที่จะกลับคืนสู่ระดับเดิมที่เวลาประมาณ 8.29 น


รูปที่ ๑๖ การสลับท่อน้ำหล่อเย็นระหว่างเส้นท่อที่ 3 และเส้นท่อที่ 4 ในหัวข้อ 5.1 เขียนไว้อีกอย่าง

ในเรื่องการสลับเส้นท่อ ข้อความในหัวข้อการสอบสวน (รูปที่ ๑๖) อ่านแล้วดูสับสนกับข้อความ ในรูปที่ ๑๕ แต่ละเส้นท่อจะมีวาล์วที่เกี่ยวข้องอยู่ 2 ตำแหน่ง ตำแหน่งแรกอยู่ที่ batter limit ที่เรียกว่าวาล์ว outlet (เพราะส่งน้ำออกจากหน่วยผลิตน้ำหล่อเย็น) ตำแหน่งที่สองอยู่ทางด้านขาเข้าเครื่องควบแน่นที่เรียกว่าวาวล์ inlet (คือป้อนน้ำหล่อเย็นเข้าเครื่องควบแน่น) ในรูปที่ ๑๖ บอกว่าก่อนการสลับเส้นท่อ วาล์ว inlet ของเส้นท่อที่ 4 ปิดอยู่ในขณะที่วาล์ว inlet และ outlet ของเส้นท่อที่ 3 นั้นเปิดอยู่ การสลับเส้นท่อคือจะหยุดใช้งานเส้นท่อที่ 3 โดยเปลี่ยนไปใช้งานเส้นท่อที่ 4 (สลับกับรูปที่ ๑๕) แต่ไม่ว่าเหตุการณ์จริงจะเป็นอย่างไร สิ่งที่เกิดคือวาล์ว outlet ของเส้นท่อที่จะนำกลับมาใช้งานนั้นปิดอยู่

รูปที่ ๑๗ เหตุการณ์ที่หอกลั่นแยกโพรเพน-โพรพิลีน

หอกลั่นแยกโพรเพน-โพรพิลีนถูกออกแบบให้ผลิตโพรพิลีนบริสุทธิ์ 99.8% (รูปที่ ๑๗) ออกทางยอดหอ และโพรเพนเหลวออกทางก้นหอ ตัวหอกลั่นสร้างในปีค.ศ. ๑๙๗๗ (พ.ศ. ๒๕๒๐) มีความสูง 90 เมตร ความดันใช้งานสูงสุดที่ยอมให้ (MAWP) คือ 1.635 MPa (ความดันเกจ) สารผสมโพรเพน-โพรพิลีนถูกป้อนเข้าที่ตำแหน่ง Tray ที่ 106 ผลิตภัณฑ์แก๊สโพรพิลีนที่ออกทางยอดหอจะถูกควบแน่นให้เป็นของเหลวด้วยเครื่องควบแน่น E-425 จำนวน 4 ตัว (A-D) โพรพิลีนที่ควบแน่นจะไหลไปยัง Reflux drum (FA-407) โดยของเหลวที่ถังนี้ส่วนหนึ่งจะถูกส่งไปเก็บเป็นผลิตภัณฑ์และอีกส่วนถูกป้อนเข้าหอกลับเพื่อเป็น reflux โดยค่าอัตราส่วนการ reflux (หรือ reflux ratio) อยู่ในช่วงประมาณ 15-18 ตัว reboiler (EA-424 A/B) ที่ก้นหอใช้ quench water เป็นแหล่งให้ความร้อน โพรเพนที่แยกมาได้จะถูกส่ง กลับไปยังหน่วย pyrolysis เพื่อใช้เป็นวัตถุดิบ หรือใช้เป็นเชื้อเพลิงถ้าจำเป็น

ค่า reflux ratio คืออัตราส่วนปริมาณของสารที่ส่งกลับไปยังหอกลั่นต่อปริมาณของสารที่ดึงออกไปเป็นผลิตภัณฑ์ อย่างเช่นในกรณีนี้ ค่า reflux ratio 15 คือจากปริมาณของเหลวที่เครื่องควบแน่นควบแน่นได้ 15 ส่วนถูกส่งกลับไปยัง Tray ที่ 1 โดยมีเพียงแค่ 1 ส่วนถูกดึงออกไปเป็นผลิตภัณฑ์ การเพิ่มค่าอัตราส่วนนี้จะทำให้ผลิตภัณฑ์ยอดหอที่ได้มีความบริสุทธิ์เพิ่มขึ้น แต่ได้ในปริมาณ (ต่อหน่วยเวลา) ที่ลดลง

การควบคุมความดันในหอใช้วาล์วควบคุม PC 04-252 ทำการปรับแต่งอัตราการไหลน้ำหล่อเย็นที่เครื่องควบแน่น และในกรณีที่ความดันขึ้นสูงก็จะใช้วาล์ว PC 04-254 ระบายแก๊สจาก Reflux drum ทิ้งออกระบบเผาแก๊สทิ้ง การควบคุมดับของเหลวก้นหอใช้การควบคุมอัตราการไหลของ quench water ด้วยวาล์ว FC 04-252

รูปที่ ๑๘ ระบบระบายความดัน

ตัวหอกลั่นแยกโพรเพน-โพรพิลีนมีวาล์วระบายความดัน (pressure relief valve) 4 ตัวที่เหมือนกันหมด วาล์วเป็นชนิดใช้แรงสปริงกด (แรงกดสปริงเป็นตัวกำหนดความดันที่จะให้วาล์วเปิด) และมี balancing bellow (เพื่อป้องกันความดันด้านขาออกมากดตัววาล์วร่วมกับแรงสปริง เพราะจะทำให้วาล์วเปิดที่ความดันสูงกว่าค่าที่ตั้งเอาไว้) ทางเข้า-ออกต่อกับท่อด้วยหน้าแปลน อุณหภูมิระบายความดันคือ 50ºC และตั้งค่าให้เปิดที่ 1.86 MPa อัตราการระบายโพรพิลีนคือ 604,700 kg/h วาล์วสร้างขึ้นตามการออกแบบในปีค.ศ. ๑๙๗๘ (พ.ศ. ๒๕๒๑) ด้านเข้า-ออกของวาล์วแต่ละตัวจะมี gate valve เพื่อให้สามารถถอดวาล์วออกมาซ่อมบำรุงได้ แต่มีกลไกป้องกันที่ทำให้ต้องมีวาล์วอย่างน้อย 3 ตัวทำงานอยู่เสมอ (การทำงานปรกติจะใช้งาน 3 ตัว ลำรอง 1 ตัว) และในระหว่างเกิดเหตุ วาล์วตัวที่ 4 ทำหน้าที่เป็นวาล์วสำรอง การตรวจสอบครั้งสุดท้าย (ก่อนเกิดเหตุ) พบว่าวาล์วทำงานได้ปรกติและไม่มีข้อบกพร่องใด ๆ (รูปที่ ๑๘)

การติดตั้ง pressure relief valve มากกว่า 1 ตัวจะทำเมื่อวาล์วตัวเดียวไม่สามารถระบายความดันได้รวดเร็วพอ หรือถ้าใช้วาล์วเพียงตัวเดียวจะต้องใช้วาล์วที่มีขนาดใหญ่ซึ่งจะเกิดปัญหา chattering ได้ง่ายเวลาที่ต้องระบายความดันที่เพิ่มขึ้นไม่มาก ในเหตุการณ์นี้ วาวล์ทั้ง 4 ตัวถูกตั้งให้เริ่มเปิดที่ความดันเดียวกัน ซึ่งเป็นสาเหตุส่วนหนึ่งที่ทำให้เกิดปัญหา (คือมาตรฐานปัจจุบันไม่แนะนำให้ทำเช่นนั้น ซึ่งตรงนี้จะกล่าวถึงในช่วงต่อไป แต่อย่าเพิ่งด่วนสรุปว่าการติดตั้งนั้นไม่เหมาะสม เพราะต้องไปดูว่ามาตรฐานตอนปีที่ติดตั้งวาล์วนั้นกล่าวไว้อย่างไร เพราะมันอาจถูกต้องตามมาตรฐาน ณ เวลานั้นก็ได้)

 

รูปที่ ๑๙ อัตราการไหลน้ำหล่อเย็น, ความดันภายในหอกลั่น, อัตราการไหลสาย reflux และระดับของเหลวใน reflux drum ในช่วงเวลาก่อนและขณะเกิดเหตุ

รูปที่ ๑๙ เป็นข้อมูลพารามิเตอร์ต่าง ๆ ของหอกลั่นแยกโพรเพน-โพรพิลีน จะเห็นว่าโอเปอร์เรเตอร์ต้องหยุดการทำงานของ reflux pump (จุดที่ reflux flow เป็นศูนย์) ก่อนที่จะกู้อัตราการไหลของน้ำหล่อเย็นกลับคืนมาได้ แต่ที่ไม่เห็นความดันเพิ่มขึ้นคงเป็นเพราะว่ามีการเปิดวาล์วเพื่อระบายความดัน แต่แม้ว่าจะกู้อัตราการไหลน้ำหล่อเย็นกลับมาได้ ระดับของเหลวใน reflux drum ก็ไม่ได้เพิ่มขึ้น (ตรงนี้น่าจะมีข้อมูลอุณหภูมิยอดหอมาประกอบหน่อย ว่าในช่วงเวลานั้นมีการเปลี่ยนแปลงอย่างไร)

ในบทความกล่าวว่ามีการวัดความดันที่ตัวหอกลั่น (น่าจะเป็นตำแหน่งก่อนถึงเครื่องควบแน่น) และการวัดความดันที่ reflux drum ข้อมูลความดันที่แสดงในรูปที่ ๑๙ (เส้นสีดำหนา) น่าจะเป็นความดันที่หอกลั่น ตรงนี้พออ่านแล้วก็เกิดคำถามส่วนตัวขึ้นว่า เป็นไปได้หรือไม่ที่โพรพิลีนที่ควบแน่นเป็นของเหลวแล้ว พอไหลมายัง reflux drum ที่มีการเปิดวาล์วระบายความดันเพื่อระบายความดันใน reflux drum ออกสู่ระบบเผาแก๊สทิ้งโดยตรง ทำให้ความดันใน reflux drum นั้นต่ำกว่าที่เครื่องควบแน่น โพรพิลีนที่ควบแน่นเป็นของเหลวจึงเดือดกลายเป็นไอใหม่อีก (เนื่องจากความดันที่ลดต่ำลง) ทำให้ไม่มีของเหลวสะสมเพิ่มใน reflux drum และการปิดวาล์วระบายความดันตรงนี้ จะช่วยแก้ปัญหาได้ไหม

รูปที่ ๒๐ การตั้งค่าความดันของวาล์วระบายความดัน

หัวข้อ 5.2.3 เป็นการพิจารณาการออกแบบวาล์วระบายความดัน (รูปที่ ๒๐) หัวข้อ 5.2.3.1 กล่าวว่า วาล์วระบายความดันทุกตัว (คือทั้ง 4 ตัว) ตั้งให้เปิดที่คามดัน 1.86 MPa (ตัว g ข้างหลังคือระบุว่าเป็น gauge pressure หรือความดันเกจ) ซึ่งเป็นไปตามข้อกำหนดของการออกแบบดั้งเดิม (น่าจะหมายถึงตอนสร้างโรงงาน) แต่มาตรฐาน API R 520 และ 521 ก็มีคำแนะนำว่า ในกรณีที่มีการติตดั้งวาล์วระบายความดันหลายตัว ควรที่จะตั้งให้เปิดที่ความดันเป็นลำดับขั้นกัน (คือค่อย ๆ เพิ่มขึ้น) และการตั้งให้เปิดที่ความดันเดียวกันก็มีส่วนที่ให้ระบบระบายความดันไม่มีเสถียรภาพ แต่เมื่อทำการพิจารณาแล้วเห็นว่าไม่ใช่สาเหตุหลักที่ทำให้เกิดการสั่นที่ก่อให้เกิดความเสียหาย

 

รูปที่ ๒๑ ตัวอย่างการตั้งค่าความดันให้วาล์วเปิดในกรณีที่มีวาล์วระบายความดัน 2 ตัว ที่สภาวะการทำงานปรกติ (Table 3)

รูปที่ ๒๒ ตัวอย่างการตั้งค่าความดันให้วาล์วเปิดในกรณีที่มีวาล์วระบายความดัน 2 ตัว ในกรณีของไฟคลอก (Table 5)

รูปที่ ๒๓ นำมาจาก API RP 521 Guide for Pressure-Relieving and Depressuring Systems ฉบับเดือนมีนาคมปีค.ศ. ๑๙๙๗ ในหัวข้อ 3.20.3.2 ในเรื่องของการหาขนาดวาล์วระบายความดัน ผู้ออกแบบควรต้องพิจารณาความเป็นไปได้ทั้งหมดที่จะทำให้ความดันสูงเกิน ประเมินค่าอัตราการไหลที่ต้องใช้ในการระบายความดัน เพราะจะส่งผลต่อพื้นที่ "orifice" (หรือขนาดช่องเปิดสำหรับให้ของไหลไหลผ่านว่าควรต้องมีพื้นที่อย่างน้อยเท่าไร) แต่เมื่อกระบวนการผลิตมีการเพิ่มขนาดมาก ขนาดพื้นที่ที่ได้จากวาล์วระบายความดันตัวเดียวจึงไม่เพียงพอ ทำให้จำเป็นต้องมีการติดตั้งวาล์วระบายความดันมากกว่าหนึ่งตัว เพื่อให้ได้ขนาดพื้นที่ orifice ตามต้องการ

ปรกติการคำนวณหาขนาด orifice จะอิงจากอัตราการเพิ่มความดันที่มากที่สุดที่คาดการณ์ไว้ว่าสามารถเกิดขึ้นได้ อย่างเช่นในกรณีของหอกลั่นอาจอิงจากเหตุการณ์ที่เครื่องควบแน่นไม่มีน้ำหล่อเย็น ในขณะที่ reboiler นั้นยังมีการให้ความร้อนอย่างเต็มที่ (ถ้าคิดว่าเหตุการณ์นี้มีโอกาสเกิดได้) แต่มันก็ก่อปัญหาได้ในกรณีที่อัตราการเพิ่มความดันไม่ได้รวดเร็วมากและระบบนั้นใช้วาล์วระบายความดันที่มีขนาดใหญ่เพียงตัวเดียวหรือตัวเล็กหลายตัวที่ตั้งให้เปิดที่ความดันเดียวกัน เพราะทันทีที่วาล์วเปิดความดันก็จะลดลงอย่างรวดเร็วทำให้วาล์วปิดโดยเร็ว และจะเป็นเช่นนี้ไปเรื่อย ๆ จนกว่าการเพิ่มความดันนั้นจะหายไป ปรากฏการณ์นี้มีชื่อเรียกว่า "chattering"

ในหัวข้อนี้กล่าวเอาไว้ด้วยว่าวาล์วอาจเกิดการ chattering ที่ทำให้เกิดความเสียหายได้ถ้าหากใช้วาล์วระบายความดันหลายตัวโดยตั้งให้ "เปิดที่ความดันเดียวกัน" แต่การแก้ปัญหาทำได้ด้วยการให้วาล์วเปิดทีละตัวที่ความดันเป็นลำดับขั้น

รูปที่ ๒๓ ข้อความใน API RP 521 ที่กล่าวถึงปัญหาที่เกิดขึ้นได้กรณีที่ใช้วาล์วระบายความดันหลายตัวโดยตั้งให้เปิดที่ความดันเดียวกัน (ในกรอบสี่เหลี่ยมสีแดง)

ในเหตุการณ์นี้เห็นว่ามีบางประเด็นที่เห็นว่าน่าจะนำมาพิจารณากันก็คือ มีการใช้วาล์วระบายความดัน 4 ตัว โดยในเวลาใดเวลาหนึ่งต้องมีวาล์วทำงานอยู่อย่างน้อย 3 ตัว

ประเด็นแรกก็คือเมื่อได้ขนาดพื้นที่ orifice ที่ต้องมีแล้ว ขนาดพื้นที่นี้ควรได้จากพื้นที่ orifice ของวาล์วจำนวน 3 ตัว (คือทำงาน 3 ตัว สำรอง 1 ตัว) หรือ 4 ตัวรวมกัน (คือให้ทั้ง 4 ตัวทำงานในเวลาเดียวกัน ไม่มีวาล์วสำรอง) เพราะถ้าใช้พื้นที่รวมของวาล์ว 4 ตัว ก็จะทำให้ขนาดพื้นที่นั้นเล็กเกินไปถ้ามีวาล์วทำงานเพียง 3 ตัว หรือจะมองว่าโอกาสที่จะเกิดเหตุการณ์ที่ทำให้จำเป็นต้องใช้วาล์ว 4 ตัวทำงานร่วมกันในขณะที่มีวาล์วพร้อมใช้งานเพียงแค่ 3 ตัวนั้นต่ำมาก

ประเด็นที่สองคือในกรณีของการใช้วาล์วมากกว่า 1 ตัวที่ตั้งค่าความดันให้เปิดเป็นลำดับ โดยวาล์วตัวแรกตั้งให้เปิดที่ค่า MAWP ถ้าหากมีความจำเป็นต้องนำวาล์วตัวนี้ออกจากระบบชั่วคราว (เช่นเอาไปซ่อมบำรุง) จะทำให้วาล์วตัวแรกที่เหลืออยู่จะเปิดที่ความดันที่สูงกว่า MAWP ระบบจะมีปัญาหาไหมถ้าเกิดปัญหาความดันสูงเกินในช่วงเวลานี้

ความผิดพลาดในการสื่อสาร (ระหว่างโอเปอร์เรเตอร์ที่ทำหน้าที่ควบคุมวาล์วน้ำหล่อเย็นที่เครื่องควบแน่น และโอเปอร์เรเตอร์ของหน่วยผลิตน้ำหล่อเย็นที่ควบคุมวาล์วเปิด-ปิดน้ำที่ส่งออกจากหน่วยผลิตน้ำหล่อเย็น) และการตรวจสอบตำแหน่งวาล์วว่าเปิดหรือปิด ทำให้เกิดปัญหาน้ำหล่อเย็นหายไป ตามมาด้วยการเกิดความดันสูงเกินจนวาล์วระบายความดันที่ตัวหอกลั่นทำงาน แต่ตัววาล์วระบายความดันเองก็เกิด chattering จนทำให้หน้าแปลนที่ยึดตัววาล์วเข้ากับท่อทางเข้าเกิดการคลายตัวจนทำให้มีโพรพิลีนรั่วไหลออกมา คำถามที่ตามมาก็คือหน้าแปลนเกิดการคลายตัวได้อย่างไร

รูปที่ ๒๔ การเกิด Acoustic resonance ที่นำไปสู่การคลายตัวของน็อตบริเวณหน้าแปลนจนทำให้เกิดการรั่วไหล

จากที่กล่าวไว้ก่อนหน้านี้ในหัวข้อ 5.2.3.1 ว่าลำพังการเกิด chattering อย่างเดียวไม่ใช่สาเหตุหลักที่ทำให้เกิดการรั่วไหล จึงจำเป็นต้องมองหาสาเหตุอื่นที่น่าจะเป็นสาเหตุหลัก

หัวข้อ 5.2.4 (รูปที่ ๒๔) จากการตรวจตัวของ bolt และ nut ที่ใช้ยึดตัววาล์วเข้ากับหน้าแปลนที่เกิดการรั่วไหลนั้น ปรากฏว่าไม่พบความเสียหายหรือรอยแตกร้าวใด ๆ (ตรงนี้ขอใช้ทับศัพท์คำ bolt และ nut เพราะภาษาไทยไปเรียกรวมว่า น็อต โดยแยกเป็นน็อตตัวผู้ (bolt หรือ สลักเกลียว) และน็อตตัวเมีย (nut) หรือแป้นเกลียว) แสดงว่าตัว nut เกิดการคลายตัวเนื่องจากการสั่นอย่างรุนแรงของระบบวาล์วระบายความดัน จนทำให้ตัว nut ค่อย ๆ คลายตัวออกอย่างช้า ๆ ซึ่งน่าจะเกิดขึ้นพร้อมกันทุกตัว

(หน้าแปลนถูกประกบเข้าด้วยกันโดยใช้ bolt และ nut ขันอัด ในการใช้งานปรกติ bolt และ nut ทุกตัวควรจะรับแรงดึงเท่า ๆ กัน (เวลาขัน nut อัดเข้าไป ตัว bolt จะยืดออก) แต่ถ้า nut เกิดการคลายตัวพร้อมกัน หน้าแปลนก็จะแยกห่างจากกันโดยที่ตัว bolt ที่ยังมีอยู่ครบทุกตัวยังช่วยกันรับแรงอยู่ แต่ถ้ามี nut ของ bolt บางตัวเกิดการคลายตัว จะทำให้ bolt ตัวนี้ไม่ได้รับแรงดึง แรงดึงบน bolt ที่เหลือจะเพิ่มสูงขึ้น และถ้าแรงดึงที่กระทำบน bolt ที่เหลืออยู่นั้นสูงเกินกว่าความแข็งแรงของวัสดุที่ใช้ทำ bolt ตัว bolt ที่เหลือก็จะฉีกขาด)

ในบทความมีการพิจารณาหลายหลายสาเหตุ แต่ข้อสรุปนั้นไปลงที่การเกิด "Acoustic resonance" ระหว่างวาล์วที่เปิดกับท่อเชื่อมต่อระหว่างตัววาล์วกับ header (ท่อหลักที่วาล์วระบายความดันทั้ง 4 ตัวเชื่อมต่ออยู่) คือจังหวะการสั่นนั้นไปทำให้เกิดคลื่นนิ่งที่มีจังหวะเดียวกันกับค่าความถี่การสั่นตามธรรมชาติ (natural frequency) ของตัววาล์วระบายความดัน จึงทำให้การสั่นเกิดรุนแรงขึ้นเรื่อย ๆ จนทำให้ nut คลายตัวออก แรงกดที่หน้าแปลนจึงหายไป โพรพิลีนจึงรั่วไหลออกมา

ปิดท้ายบทความชุดนี้ด้วยภาพเพลิงไหม้บริเวณหอกลั่นแยกโพรเพน-โพรพิลีนจากบทความที่นำมาเล่าให้ฟังก็แล้วกัน

รูปที่ ๒๕ ภาพเพลิงไหม้บริเวณหอกลั่นแยกโพรเพน-โพรพิลีน

วันจันทร์ที่ 29 มกราคม พ.ศ. 2567

เพลิงไหม้และการระเบิดที่ Steam Cracker Unit, Czech Republic 2558 (2015) ตอนที่ ๑ กระบวนการผลิต MO Memoir : Monday 29 January 2567

เรื่องที่นำมาเล่าในวันนี้นำมาจากบทความเรื่อง "Propylene column pressure relief valves chattering resulting in explosion and fire of the Steam Cracker unit" ตีพิมพ์ในวารสาร Journal of Loss Prevention in the Process Industries ฉบับปีค.ศ. ๒๐๒๒ (พ.ศ. ๒๕๖๕) โดยเป็นเหตุการณ์ที่เกิดขึ้นที่โรงงานโอเลฟินส์แห่งหนึ่งในสาธารณรัฐเช็ก เมื่อวันที่ ๑๓ สิงหาคม ค.ศ. ๒๐๑๕ (พ.ศ. ๒๕๕๘)

รูปที่ ๑ บทความที่นำมาเป็นต้นเรื่องในวันนี้

ถ้าดูตามชื่อเรื่องก็ทำให้คิดว่าสาเหตุหลักเกิดจากการที่วาล์วระบายความดันมีการเปิด-ปิดอย่างรวดเร็วต่อเนื่อง (ที่เรียกว่า "chattering") ทำให้เกิดแรงกระแทกที่ส่งผลให้น็อตที่ยึดหน้าแปลนของตัววาล์วนั้นเกิดการคลายตัว แก๊สก็เลยรั่วออกมาได้ ส่งผลให้เกิดการจุดระเบิดตามมา แต่พอได้อ่านเนื้อหาในบทความ เห็นว่าส่วนหนึ่งน่าจะเป็นเพราะการออกแบบระบบมีปัญหา ทำให้ระบบไม่มีเสถียรภาพเมื่อถูกรบกวนชั่วขณะหนึ่ง ส่งผลให้วาล์วระบายความดันเกิดการ "chattering" อย่างเช่นในเหตุการณ์นี้ที่โอเปอร์เรเตอร์พบว่าลืมเปิดวาล์วน้ำหล่อเย็น ทำให้อัตราการไหลของน้ำหล่อเย็นลดลง แต่พอสามารถทำให้อัตราการไหลของน้ำหล่อเย็นกลับคืนเดิมได้ ก็ไม่สามารถกู้ให้ระบบกลับคืนสู่สภาวะเดิมได้

เนื้อหาในบทความนี้สำหรับคนที่ทำงานทางด้านนี้อยู่แล้วจะสามารถอ่านและทำความเข้าใจได้ง่าย แต่สำหรับผู้ที่กำลังศึกษาอยู่หรือไม่ได้ทำงานทางด้านวิศวกรรมเคมีหรือไม่ได้ทำงานเกี่ยวข้องกับกระบวนการกลั่น ก็อาจมีหลายจุดที่อ่านแล้วไม่เข้าใจความหมาย ก็เลยนำขอมาเขียนแบบขยายความเพิ่มเติม จะได้ถือโอกาสเอาไปใช้ในการสอนนิสิตด้วย

ตอนแรกนี้จะเป็นการแนะนำให้รู้จักกระบวนการผลิตของโรงงานที่เกิดเรื่องก่อน (รูปที่ ๒ และ ๓)

รูปที่ ๒ คำบรรยายกระบวนการผลิตในช่วงเข้า-ออก pyrolysis heater

การผลิตเอทิลีนใช้การให้ความร้อนด้วยเปลวไฟแก่วัตถุดิบที่ไหลอยู่ในท่อ วัตถุดิบอาจเป็นไฮโดรคาร์บอนเบาเช่นอีเทน (ethane C2H6) ไปจนถึงน้ำมันหนัก (ระดับน้ำมันดีเซลหรือน้ำมันเตาเบา) อุปกรณ์นี้มีชื่อเรียกว่า "pyrolysis heater" ที่โรงงานมีทั้งสิ้น 10 หน่วยด้วยกัน (BA-101 ถึง BA-110) ซึ่งสร้างตามเทคโนโลยีของบริษัท Lummus ที่มีชื่อว่า SRT III (SRT ย่อมาจาก Short Residence Time) โครงสร้าง pyrolysis heater แบ่งออกเป็น 2 ส่วน ส่วนล่างที่เป็นส่วนให้ความร้อนด้วยเปลวไฟแก่วัตถุดิบที่ไหลอยู่ในท่อเป็นส่วนที่โมเลกุลไฮโดรคาร์บอนแตกออกเป็นโมเลกุลเล็กลงและได้เอทิลีนออกมา ส่วนนี้เป็นส่วนที่ให้ความร้อนด้วยการแผ่รังสีความร้อน (Radiation section ในรูปที่ ๓)

ที่อุณหภูมิสูง การส่งผ่านพลังงานความร้อนด้วยการแผ่รังสีความร้อนจะมีบทบาทสำคัญมากกว่ากลไกอื่น เพราะการส่งผ่านพลังงานความร้อนด้วยการแผ่รังสีความร้อนแปรผันตามอุณหภูมิยกกำลัง 4 (T4 เมื่อ T คืออุณหภูมิ)

แก๊สร้อนที่เกิดจากการเผาไหม้จะลอยขึ้นทางปล่องด้านบน โดยจะมีการถ่ายเทความร้อนให้กับวัตถุดิบที่ป้อนเข้ามาและน้ำและไอน้ำเพื่อผลิตไอน้ำความดันสูง การให้ความร้อนในส่วนนี้เป็นการถ่ายเทความร้อนจากแก๊สร้อนที่อยู่ภายนอกท่อไปยังของไหลที่เย็นกว่าที่ไหลอยู่ในท่อ (ชื่อส่วนนี้คือ Convection section) ปล่องด้านบนถูกแบ่งออกเป็น 4 ส่วน ส่วนที่หนึ่งที่อยู่ด้านบนสุดจะมีอุณหภูมิต่ำสุด เป็นจุดที่วัตถุดิบที่ป้อนเข้ามาจะรับความร้อนเพื่อเพิ่มอุณหภูมิ และกลับมารับความร้อนใหม่ที่ส่วนที่สี่ที่อยู่ล่างสุดเพื่อเพิ่มอุณหภูมิให้สูงขึ้นไปอีกก่อนที่จะไหลเข้าส่วนที่ให้ความร้อนด้วยการแผ่รังสีความร้อน โดยก่อนที่วัตถุดิบจะไหลเข้าส่วนที่สี่นี้จะมีการผสมไอน้ำเข้าไป

ปฏิกิริยาที่แก๊สโมเลกุลใหญ่แตกออกเป็นโมเลกุลเล็กลงเป็นปฏิกิริยาที่มีจำนวนโมลเพิ่มขึ้น (กล่าวอีกอย่างก็คือทำให้ปริมาตรของแก๊สเพิ่มขึ้น) สมดุลเคมีบ่งบอกว่าปฏิกิริยาแบบนี้จะเกิดได้ดีขึ้นที่สภาวะความดัน (หรือความดันย่อย - partial pressure) ของสารตั้งต้นต่ำ การผสมไอน้ำเข้าไปจะไปช่วยลดความดันย่อยของสารตั้งต้นให้ต่ำลง ทำให้ปฏิกิริยาดำเนินไปข้างหน้าได้ดีขึ้น ในขณะเดียวกันก็ยังสามารถใช้ในการไล่ไฮโดรคาร์บอนที่ตกค้างในท่อออก (ในกรณีที่ต้องการหยุดการป้อนวัตถุดิบ) และช่วยป้องกันความเสียหายของท่อได้ (คือถ้าท่อไม่มีของไหลคอยรับความร้อนอยู่ภายใน ผิวโลหะของท่อก็จะมีอุณหภูมิสูงขึ้นจนอาจเกิดความเสียหายได้)


รูปที่ ๓ แผนผังกระบวนการผลิตในส่วนของ Pyrolysis heater และ Transfer-Line Exchanger (TLE)

น้ำปราศจากไอออน (Demineralised water หรือ Demin water) จะเข้ามารับความร้อนที่ส่วนที่สอง ก่อนที่จะถูกป้อนไปยัง Transfer Line Exchanger (TLE) เพื่อลดอุณหภูมิแก๊สร้อนที่ออกมาจาก pyrolysis heater ให้เย็นตัวลงอย่างรวดเร็ว (เพื่อหยุดปฏิกิริยาการสลายตัวของเอทิลีน) และน้ำจะเดือดกลายเป็นไอน้ำความดันสูง ไอน้ำที่ออกมาจาก TLE นี้จะไปรับความร้อนยังส่วนที่สามเพื่อเปลี่ยนสภาพเป็นไอน้ำร้อนยวดยิ่ง (superheated steam หรือบางทีเรียกว่า "ไอดง") ก่อนจะถูกนำไปใช้ยังส่วนอื่น ๆ ของโรงงานต่อไป

ทางด้านขาออกของ TLE มีการฉีด "Quench oil" เข้าไปเพื่อลดอุณหภูมิแก๊สผลิตภัณฑ์ให้ต่ำลงไปอีกก่อนที่จะไหลไปยังหน่วยถัดไป (ส่วน Quench tower)

วิธีการที่มีประสิทธิภาพสูงในการลดอุณหภูมิแก๊สร้อนคือการฉีดของเหลว (ที่ระเหยได้) เข้าไปผสมกับแก๊สร้อนนั้นโดยตรง ค่าความร้อนแฝงของการกลายเป็นไอที่สูงของของเหลวจะทำให้แก๊สร้อนเย็นตัวลงอย่างรวดเร็ว และเร็วกว่าเมื่อเทียบกับการให้แก๊สร้อนถ่ายความร้อนผ่านผนังโลหะไปยังของเหลวที่อยู่อีกฟากหนึ่งเพื่อทำให้ของเหลวนั้นมีอุณหภูมิสูงขึ้น แต่ของเหลวที่ฉีดเข้าไปนั้นต้องไม่ไปทำปฏิกิริยาอะไรกับสารที่อยู่ในแก๊สและควรแยกออกมาได้ง่าย

รูปที่ ๔ คำบรรยายรายละเอียดส่วนของ pyrolysis heater

รูปที่ ๔ เป็นคำบรรยายโครงสร้างของ pyrolysis heater ตัวโรงงานประกอบด้วย pyrolysis heater ที่มีรูปแบบการวางท่อแตกต่ากัน 3 รูปแบบคือ รูปแบบ Lummus SRT I จำนวน 1 หน่วย รูปปแบบ Lummus SRT III จำนวน 5 หน่วย และรูปแบบ Technip radiant coil GK-6 จำนวน 4 หน่วย

การจัดวางท่อรูปแบบ Lummus SRT I ประกอบด้วยท่อเดี่ยวจำนวน 4 ท่อที่มีขนาดเส้นผ่านศูนย์กลางคงในในส่วน radiation section การจัดวางท่อรูปแบบ Lummus SRT IIIเริ่มต้นด้วยท่อเดี่ยวจำนวน 4 ท่อที่รับวัตถุดิบเข้ามา จากนั้นท่อเดี่ยว 2 ท่อจะรวมเข้ากับเป็นท่อขนาดกลาง 2 ท่อที่มีขนาดเส้นผ่านศูนย์กลางใหญ่ขึ้น และสุดท้ายท่อขนาดกลาง 2 ท่อจะรวมกันเป็นท่อใหญ่ 1 ท่อที่มีขนาดเส้นผ่านศูนย์กลางใหญ่ขึ้น ก่อนที่จะออกจากส่วน radiation section ส่วนการจัดวางท่อรูปแบบ GK-6 ประกอบด้วยท่อเดี่ยวจำนวน 6 ท่อในส่วนของ radiation section

การให้ความร้อนในส่วนนี้ หัวเตาที่อยู่ทางด้านล่างของ pyrolysis heater ให้ความร้อนประมาณ 30% ของความร้อนที่ต้องใช้ โดยความร้อนส่วนที่เหลือมาจากหัวเตาที่อยู่ที่ผนังด้านข้าง

รายละเอียดเพิ่มเติมของ pyrolysis heater และการจัดวางท่อรูปแบบ SRT I และ SRT III นี้อ่านเพิ่มเติมได้ในบทความก่อนหน้านี้คือ

"ทำความรู้จัก Fired process heater (ตอนที่ ๓)" (MO Memoir ฉบับวันพุธที่ ๓ กุมภาพันธ์ พ.ศ. ๒๕๕๙)

"ทำความรู้จัก Fired process heater (ตอนที่ ๔)" (MO Memoir ฉบับวันพฤหัสบดีที่ ๔ กุมภาพันธ์ พ.ศ. ๒๕๕๙)

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๔ Pyrolysis and waste heat recovery ภาค ๒" (MO Memoir ฉบับวันอังคารที่ ๑ มีนาคม พ.ศ. ๒๕๕๙)

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๕ Pyrolysis and waste heat recovery ภาค ๓" (MO Memoir ฉบับวันพฤหัสบดีที ่๓ มีนาคม พ.ศ. ๒๕๕๙)

 

รูปที่ ๕ กระบวนการลดอุณหภูมิสารที่ออกจาก pyrolysis heater

ปฏิกิริยาทำให้ไฮโดรคาร์บอนโมเลกุลใหญ่แตกออกเป็นเอทิลีนที่มีขนาดโมเลกุลเล็กลงเป็นปฏิกิริยาดูดความร้อน จำเป็นต้องใช้อุณหภูมิในการทำปฏิกิริยาที่สูงเพื่อให้ปฏิกิริยาเกิดได้ แต่ถ้าใช้อุณหภูมิที่สูงเกินไปหรืออยู่ที่อุณหภูมิสูงนานเกินไป เอทิลีนที่ได้ก็จะสลายตัวต่อไปเป็นสารอื่น ดังนั้นเมื่อได้เอทิลีนแล้วจึงต้องลดอุณหภูมิแก๊สร้อนที่ออกมาจาก pyrolysis heaterให้เย็นตัวลงอย่างรวดเร็ว (ดูรูปที่ ๕ ประกอบ) แก๊สที่ออกมาจาก pyrolysis heater มีอุณหภูมิประมาณ 810-850ºC จะไหลเข้าสู่ Transfer Line Exchanger (TLE) ที่มีน้ำความดันสูงเป็นแหล่งรับความร้อน น้ำที่รับความร้อนจะกลายเป็นไอน้ำความดันสูง ส่วนแก๊สร้อนจะมีอุณหภูมิลดเหลือประมาณ 450-550ºC ซึ่งจะถูกทำให้เย็นลงต่อด้วยการฉีด "quench oil" เข้าไป (ในที่นี้คือไฮโดรคาร์บอนเหลวที่เกิดจากปฏิกิริยาข้างเคียงในกระบวนการผลิต)

ส่วนของ pyrolysis heater นี้สามารถตัดแยกระบบออกจากส่วนที่เหลือด้วยวาล์วควบคุมการปิดเปิดด้วยมอเตอร์ DN-1000 ที่มีชื่อเรียกว่า RHEFLA valve จุดนี้ถือว่าเป็นจุดสิ้นสุดของการเกิดปฏิกิริยาและการหยุดปฏิกิริยา (ปรกติจะเห็นการใช้คำว่า "isolate" ในการตัดแยกระบบ แต่ในบทความนี้ใช้คำว่า "insulate" ซึ่งไม่ค่อยเห็นใครใช้กันนัก)

รูปที่ ๖ กระบวนการลดอุณหภูมิและกลั่นแยกผลิตภัณฑ์

ในขั้นตอนต่อไปแก๊สร้อนที่มีอุณหภูมิเหลือประมาณ 200-250ºC จะถูกลดอุณหภูมิให้ต่ำลงไปอีกจนกลายเป็นของเหลวก่อนทำการกลั่นแยก (รูปที่ ๖ และ ๗) ในโรงงานนี้การทำให้เย็นตัวลงเริ่มด้วยการให้แก๊สร้อนนั้นสัมผัสกับของเหลวที่เป็นน้ำมันก่อนเพื่อแยกเอาไฮโดรคาร์บอนบางส่วนออกไป (หมายเลข 1 ในรูปที่ ๗) จากนั้นจะสัมผัสกับน้ำโดยตรงในหอที่เรียกว่า Quench tower (หมายเลข 3 ในรูปที่ ๗) ณ ที่นี้จะเหลือแต่ไฮโดรคาร์บอนเบาที่ไม่ควบแน่นและไอน้ำผ่านออกจากระบบ อุณหภูมิแก๊สจะลดลงเหลือประมาณ 30ºC ส่วนหนึ่งของไฮโดรคาร์บอนที่ควบแน่นถูกนำไปใช้เป็น quench oil และนำไปเข้ากระบวนการอื่น ส่วนหนึ่งของน้ำร้อนที่ออกจาก Quench tower จะถูกนำไปใช้เป็นแหล่งให้ความร้อนแก่หม้อต้มซ้ำ (reboiler) ของหอกลั่นแยกโพรเพน-โพรพิลีนก่อนที่จะนำกลับมาใช้ใหม่ (ตรงประเด็นนี้จะมีการกล่าวถึงในส่วนของกระบวนการกลั่นอีกที)

รูปที่ ๗ กระบวนการถัดจาก pyrolysis heater "pyrolysis gasoine" คือไฮโดรคาร์บอนที่มีจำนวนอะตอมคาร์บอนในช่วงน้ำมันแก๊สโซลีน (ที่บ้านเราเรียกน้ำมันเบนซิน)

การแยกผลิตภัณฑ์กระทำโดยใช้กระบวนการกลั่น ซึ่งต้องทำให้แก๊สนั้นกลายเป็นของเหลวอุณหภูมิต่ำก่อน จากนั้นจึงค่อย ๆ เพิ่มอุณหภูมิให้สูงขึ้นเป็นลำดับเพื่อแยกเอาสารที่มีจุดเดือดต่ำออกจากสารที่มีจุดเดือดสูง การเพิ่มความดันแก๊สทำให้สามารถทำให้แก๊สเป็นของเหลวได้ที่อุณหภูมิไม่ต่ำเกินไป แก๊สที่ผ่านออกมาจาก quench tower ที่อิ่มตัวไปด้วยไอน้ำจะถูกเพิ่มความดันด้วยการอัดเพิ่มความดันเป็นขั้น ๆ จำนวน 5 ขั้นตอน โดยในระหว่างแต่ละขั้นจะมีการลดอุณหภูมิแก๊ส (ที่ร้อนขึ้นเพราะการอัด) และแยกส่วนที่ควบแน่นเป็นของเหลวออกมา มีการใช้สารดูดซับเพื่อดึงน้ำที่ยังคงค้างอยู่ออก (เพราะมันจะกลายเป็นน้ำแข็งอุดตันในระบบลดอุณหภูมิได้) มีการกำจัดแก๊สที่มี่ฤทธิ์เป็นกรด (พวก H2S และ CO2) และมีการเติมไฮโดรเจนให้กับสารประกอบไฮโดรคาร์บอนพวกพันธะ 3 (สารประกอบ alkyne เช่นอะเซทิลีนหรือเมทิลอะเซทิลีน) หรือมีความไม่อิ่มตัวหลายตำแหน่ง (ผลิตภัณฑ์ข้างเคียงที่เกิดจากปฏิกิริยาที่ไม่ต้องการ) เพื่อให้กลายเป็นผลิตภัณฑ์ที่ต้องการ ส่วนที่ว่ากระบวนการกำจัดความชื้นและเติมไฮโดรเจนจะอยู่ระหว่างขั้นตอนไหนของกระบวนการอัดนั้นขึ้นอยู่กับการออกแบบ

แก๊สที่ผ่านการเพิ่มความดันและทำให้แห้งจะถูกลดอุณหภูมิด้วยหน่วยที่มีชื่อเรียกว่า "Cold box" จนมีอุณหภูมิลดลงเหลือประมาณ -160ºC จากนั้นจะเข้าสู่กระบวนการแยกไฮโดรเจนและมีเทนออกไปก่อนในรูปแก๊สที่ออกทางด้านบนของหอกลั่นที่หน่วย Demethanizer (ดูรูปที่ ๗ ประกอบ) ของเหลวที่ออกจากหน่วย Demethanizer จะเข้าสู่การแยกไฮโดรคาร์บอน C2 และ C3 ออกจากกันที่หน่วย Deethanizer โดยอีเทนกับเอทิลีนจะถูกแยกออกทางด้านบนและถูกกลั่นแยกออกจากกันอีกทีที่หน่วย Ethylene column ส่วนไฮโดรคาร์บอนตั้งแต่ C3 เป็นต้นไปจะถูกแยกออกทางด้านล่าง โดยไปทำการแยกโพรเพนและโพรพิลีนออกจากไฮโดรคาร์บอนที่เหลือที่หน่วย Depropanizer และไปทำการกลั่นแยกสารทั้งสองออกจากกันอีกทีที่หน่วย Propylene column ส่วนไฮโดรคาร์บอนตั้งแต่ C4 เป็นต้นไปจะถูกส่งไปแยกเป็นส่วนต่าง ๆ ในกระบวนการอื่น ๆ ต่อไป ซึ่งขอไม่กล่าวถึง เพราะไม่ได้มีส่วนเกี่ยวข้องกับอุบัติเหตุที่เกิด (แต่มีคำบรรยายไว้ในช่วงท้ายของรูปที่ ๗)

ฉบับนี้ขอเปิดตัวด้วยกระบวนการผลิตเพียงแค่นี้ก่อน

วันอาทิตย์ที่ 7 พฤศจิกายน พ.ศ. 2564

เพลิงไหม้จากเฮกเซนที่รั่วจากหน้าแปลนที่น็อตคลายตัวจากการสั่น MO Memoir : Sunday 7 November 2564

เรื่องที่นำมาเล่าในวันนี้นำมาจากบทความเรื่อง "Fire caused due to a flange loosened from vibrations at a synthetic rubber plant" (http://www.shippai.org/fkd/en/cfen/CC1200084.html) เป็นเหตุการณ์ที่เกิดขึ้นในโรงงานผลิตยางสังเคราะห์ Ethylene-Propylene (ยาง EP) เมื่อวันที่ ๑ ธันวาคม ๒๕๔๓ เวลาประมาณ ๑๕.๓๕ น แผนผังกระบวนการผลิตของหน่วยที่เกิดเหตุแสดงไว้ในรูปที่ ๑ ข้างล่าง

รูปที่ ๑ แผนผังส่วนที่เกิดเหตุ ปั๊มตัวที่เกิดเหตุคือ P-103B ที่ทำหน้าที่สูบเฮกเซนจาก R-102 ไปยัง washing section และอีกตัวที่เกี่ยวข้องคือ P-103G

บทความบรรยายเหตุการณ์เอาไว้ว่า ปั๊ม P-103G (ที่ท่อด้านขาออกนั้นมีการใช้งานร่วมกับปั๊ม P-103B) เกิด cavitation (ด้วยสาเหตุที่ไม่ทราบแน่ชัด) ประกอบกับด้านขาออกของปั๊ม P-103B ที่มีขนาด 3 นิ้วนั้น ถูกต่อตรงเข้ากับ reducer ขนาด 6 นิ้ว (คือไม่มีท่อสั้น ๆ ที่เรียกว่า spool piece เป็นตัวเชื่อมต่อ) ประกอบกับการที่ท่อมีขนาดแตกต่างกันมากจึงทำให้น็อตยึดหน้าแปลนนั้นคลายตัวได้เร็วขึ้น ทำให้เฮกเซนรั่วออกมาก่อนที่จะเกิดเพลิงไหม้

ย่อหน้าข้างบนคือสรุปเนื้อหาในบทความต้นฉบับที่เขียนไว้สั้น ๆ ประมาณสิบบรรทัดเศษ ต่อไปจะเป็นการขยายภาพเหตุการณ์โดยอาศัยความรู้ที่พอมีอยู่บ้าง เพื่อให้ผู้ที่กำลังศึกษาอยู่นั้นมองภาพเหตุการณ์ที่เกิดได้ชัดเจนขึ้น

เอทิลีน (Ethylene H2C=CH2) และโพรพิลีน (Propylene H3CCH=CH2) เกิดเป็นพอลิเมอร์ได้ไม่ง่าย เว้นแต่มีตัวเร่งปฏิกิริยาช่วย เนื่องจากการต่อโมเลกุลเข้าด้วยกันนั้นมีการคายความร้อนออกมา ดังนั้นการพอลิเมอร์ไรซ์จึงต้องหาทางระบายความร้อนนี้ออกด้วย และเทคนิคหนึ่งที่ใช้คือการใช้ตัวทำละลาย

ตัวทำละลายทำหน้าที่เป็นทั้งตัวกลางสำหรับละลายสารตั้งต้น (เอทิลีนและโพรพิลีนที่เป็นแก๊ส) และตัวเร่งปฏิกิริยา และเป็น heat sink สำหรับรับความร้อนที่ปฏิกิริยาคายออกมา ในกระบวนการนี้ตัวทำละลายที่ใช้คือเฮกเซน (Hexane C6H14) ซึ่งเป็นโมเลกุลไม่มีขั้วเช่นเดียวกับสารตั้งต้นและผลิตภัณฑ์ จากสารตั้งต้นที่เป็นแก๊ส เมื่อมีการต่อเป็นโมเลกุลใหญ่ขึ้น (เป็น oligomer ก่อน จากนั้นจึงค่อยกลายเป็น polymer) ความสามารถในการละลายในตัวทำละลายจะลดลง แต่ถ้าอุณหภูมิสูงพอ มันก็ยังละลายอยู่ในตัวทำละลายนั้นได้ แต่ถ้าตำแหน่งไหนของระบบ (ตัว vessel หรือระบบท่อ) มีอุณหภูมิต่ำเกินไป โมเลกุลขนาดใหญ่ที่ละลายอยู่ในตัวทำละลายก็จะแข็งตัวเกาะอยู่บนพื้นผิวนั้น ก่อให้เกิดปัญหาเรื่องการถ่ายเทความร้อนและ/หรือการไหลได้

กระบวนการในรูปที่ ๑ นั้นจะเห็นว่ามีปั๊ม P-103 อยู่ 2 ตัวคือ P-103A P-103B พึงสังเกตว่าปั๊มแต่ละตัวมีท่อต่อแยกอิสระเข้าไปยัง R-102 ซึ่งแสดงให้เห็นว่าท่อบริเวณระหว่าง R-102 และปั๊ม P-103 นั้นมีโอกาสเกิดการอุดตัน จึงต้องมีการเดินท่อสำรองแยกออกจากกัน เมื่อเกิดปัญหาเกิดการอุดตันที่ท่อหนึ่ง ก็จะเปลี่ยนไปใช้อีกท่อหนึ่งแทน

จากแผนผัง ตัว R-102 น่าจะทำหน้าที่เป็น liquid-gas separator คือการเกิดปฏิกิริยาการพอลิเมอร์ไรซ์นั้นจะเกิดภายใต้ความดันระดับหนึ่งเพื่อเพิ่มการละลายของเอทิลีนและโพรพิลีนในเฮกเซน เฮกเซนที่ออกมาจาก reactor จะมีสารตั้งต้นที่หลงเหลือจากการทำปฏิกิริยา, oligomer (ที่ควรละลายอยู่ในเฮกเซน), และ polymer ที่อาจละลายอยู่ (ถ้าเป็น solution phase) หรือแขวนลอยอยู่ (ถ้าเป็น slurry phase) ซึ่งขึ้นอยู่กับว่ากระบวนการพอลิเมอร์ไรซ์เป็นแบบไหน การแยกเอาสารตั้งต้นที่ละลายอยู่นั้นทำได้ด้วยการลดความดัน เช่นการถ่ายเฮกเซนจาก reactor ที่ความดันสูงมายัง R-102 ที่ความดันที่ต่ำกว่า เอทิลีนและโพรพิลีนก็จะระเหยออกมาจากตัวทำละลาย

ปั๊มที่แสดงในรูปนั้นควรจะเป็นปั๊มหอยโข่ง (centrifugal pump) และเพื่อทำให้ปั๊มทำงานได้เรียบร้อยจึงมีการติดตั้งระบบ flushing คือการใช้ตัวทำละลายที่สะอาดอัดเข้าไปบริเวณ mechanical seal (ตัวนี้เป็น moving part ที่ทำหน้าที่ป้องกันการรั่วไหลจากภายในตัวปั๊มออกมาข้างนอก) เฮกเซนที่สะอาดนี้จะป้องกันไม่ให้สิ่งแปลกปลอม (เช่นผงอนุภาคพอลิเมอร์ที่แขวนลอยอยู่) เข้ามาสะสมบริเวณตัว mechanical seal

ปั๊มหอยโข่งเวลาทำงานตามปรกติตัวระบบท่อก็ไม่ค่อยมีการสั่นอะไรอยู่แล้ว แต่ถ้าเป็นกรณีที่การไหลไม่ราบเรียบเช่นมีปัญหาด้านขาเข้าทำให้เกิด cavitation ก็อาจทำให้ท่อเกิดการสั่นมากผิดปรกติได้ ซึ่งในบทความนี้กล่าวไว้เพียงว่าไม่ชัดเจนว่าปั๊ม P-103G เกิด cavitation ได้อย่างไร โดยความเห็นส่วนตัวคิดว่าท่อเข้าปั๊ม P-103A ที่เป็นตัวหลักนั้นเกิดปัญหาอุดตัน จึงมีการเปลี่ยนไปใช้ปั๊ม P-103B แทน ท่อเข้าปั๊ม P-103G นั้นเป็นท่อเดียวกับท่อเข้าปั๊ม P-103A นั้น ดังนั้นเมื่อท่อนี้อุดตันจึงสามารถก่อปัญหาให้กับปั๊มสองตัวนี้พร้อมกันได้ และนี่อาจเป็นสาเหตุที่ทำให้เกิด caviation

เป็นเรื่องปรกติที่การสั่นนั้นสามารถทำให้น็อต (ไม่ว่าจะยึดอะไร) สามารถคลายตัวได้ บทความต้นฉบับยังตั้งคำถามว่าเป็นเรื่องยากที่จะเข้าใจว่าทำไม cavitation ที่รุนแรงจนทำให้เกิดการสั่นที่ทำให้น็อตยึดหน้าแปลนคลายตัวได้นั้นจึงไม่ได้รับความใส่ใจ แต่โดยส่วนตัวคิดว่าคำถามหนึ่งที่น่าจะถามก็คือ นับตั้งแต่เริ่มเกิด cavitation จนกระทั่งเกิดการรั่วไหลนั้นกินเวลานานเท่าใด โอเปอร์เรเตอร์คงไม่ปล่อยให้ปั๊มทำงานทั้ง ๆ ที่เกิด cavitation ข้ามกะแน่ เพราะการทำงานปรกติต้องมีการเตินตรวจอยู่แล้ว และเสียงผิดปรกติก็เป็นสิ่งที่ดึงความสนใจได้ดี เป็นไปได้หรือเปล่าที่เหตุการณ์ดังกล่าวเกิดขึ้นในเวลาที่สั้น (กล่าวคือเพียงแค่ไม่กี่ชั่วโมงหรือช่วงระยะเวลาระหว่างการเดินตรวจแต่ละครั้ง) จึงทำให้มันหลุดรอดการตรวจพบไปได้

วันอังคารที่ 22 ธันวาคม พ.ศ. 2563

UVCE case 7 Shell Olefin Plant 2540 (1997) ตอนที่ ๒ MO Memoir : Tuesday 22 December 2563

เวลาผมสอนนิสิตทำการทดลอง ผมจะบอกกับเขาเสมอว่า อย่าคิดว่าแค่ดูแต่ตัวเลขหน้าจอหรือรอว่าตอนสุดท้ายจะได้อะไรก็พอ แต่ให้ใช้ประสาทสัมผัสอื่น ๆ ด้วยว่า ในสภาพการทำงานที่ปรกตินั้น ระบบมีพฤติกรรมอย่างไร ไม่ว่าจะเป็นเรื่องกลิ่น เสียง อุณหภูมิ สัญญาณไฟแสดงการทำงานของอุปกรณ์ ฯลฯ

กลิ่นเป็นตัวบอกให้รู้ว่ามีการรั่วไหลอะไรเกิดขึ้นไหม ในขณะที่เสียงที่ผิดไปจากเดิมอาจบ่งบอกถึงการทำงานที่ผิดปรกติของเครื่องจักรกล (เช่นมีการสั่นที่ผิดปรกติ) ความผิดปรกติของอุณหภูมิที่สูงเกินอาจมาในรูปของกลิ่น (เช่นกลิ่นไหม้) หรือบางทีอาจเห็นการลอยตัวขึ้นของมวลอากาศที่อยู่รอบ ๆ พื้นผิวที่ร้อนจัดนั้น อุปกรณ์ควบคุมอุณหภูมิที่ทำงานด้วยการ ON-OFF ขดลวดความร้อนนั้น การที่สัญญาณไฟแสดงว่ามีการกระแสไฟฟ้าให้กับขดลวดนานผิดปรกติหรือตลอดเวลาแม้ว่าจะไม่ได้อยู่ในช่วงเพิ่มอุณหภูมิก็ตาม ก็อาจบ่งบอกถึงการที่ขดลวดความร้อนบางเส้นขาดไป ทำให้ขวดลวดที่เหลือต้องรับภาระแทน เป็นต้น

การสั่นสะเทือนสามารถทำให้ชิ้นส่วนที่ยึดติดแน่น (เช่นนอตที่ขันตึง หรือลิ่มที่ตอกอัดรอยต่อระหว่างชิ้นส่วนสองชิ้นเพื่อให้ติดกันแน่น) หลวมตัวได้ และยังสามารถทำให้ชิ้นส่วนที่หลวมตัวนั้นเคลื่อนตัวจนหลุดออกมาได้ นอกจากนี้การสั่นและการกระแทกยังสามารถทำให้ชิ้นส่วนบางชนิด (เช่น ลิ่ม หมุดและสลักเกลียว หรือชิ้นงานที่ทำจากวัสดุที่มีความแข็งเกร็ง) เสียหายด้วยการแตกหักได้

กลับมายังเหตุการณ์ที่เกิดขึ้นต่อ (คงไม่ขอลงรายละเอียดทั้งหมด ถ้าใครสนใจก็สามารถอ่านได้จากรายงานการสอบสวนที่สามารถหาดาวน์โหลดได้ทางอินเทอร์เน็น) แต่หลังจากที่ประสบปัญหาหลายครั้งเรื่องการที่คอมเพรสเซอร์หยุดทำงานเนื่องจากมีการสั่นสะเทือนมากเกินไป ในที่สุด ณ เวลาประมาณ ๑๐.๐๐ น โอเปอร์เรเตอร์ก็สามารถเดินเครื่องคอมเพรสเซอร์ได้ และระบบก็ดูเหมือนว่าทำงานได้อย่างปรกติ

เวลาประมาณ ๑๐.๐๓ น โอเปอร์เรเตอร์ที่ปฏิบัติงานอยู่ภายนอกได้ยินเสียง "Pop" ตามด้วยเสียงที่มีลำแก๊สฉีดพุ่ง (รายงานบอกว่าโอเปอร์เรเตอร์บางคนบอกว่าเสียงเหมือนเครื่องยนต์เจ็ต ในขณะที่บางคนบอกว่าเหมือนกับวาล์วระบายความดันของไอน้ำความดัน 1250 psi (ที่ใช้ขับเคลื่อนคอมเพรสเซอร์) เปิดระบายความดัน) มีการติดต่อถามเข้าไปในห้องควบคุมว่ามีสัญญาณผิดปรกติแสดงในห้องควบคุมบ้างหรือไม่ แต่ได้รับคำตอบว่าไม่มี

ตรงนี้ในรายงานการสอบสวนกล่าวว่า เมื่อย้อนกลับไปดูบันทึกการทำงานของเครื่องคอมเพรสเซอร์ในช่วงเวลานั้นโดยละเอียดพบว่า อัตราการไหลออกจากขั้นตอนการอัดขั้นตอนที่ 5 เริ่มที่จะค่อย ๆ ลดลงอย่างช้า ๆ ในขณะที่อัตราการไหลออกจากขั้นตอนการอัดขั้นตอนที่ 4 เพิ่มขึ้นเล็กน้อยชั่วขณะก่อนที่จะลดลง แต่เนื่องจากการเปลี่ยนแปลงนี้มีค่าน้อยเมื่อเทียบกับอัตราการไหลทั้งหมดของแก๊ส จึงทำให้โอเปอร์เรเตอร์สังเกตไม่เห็น

ข้อมูลนี้อาจถือได้ว่าเป็นตัวบ่งบอกว่ามีการรั่วไหลเกิดขึ้นระหว่างด้านขาออกจากขั้นตอนการอัดขั้นตอนที่ 4 และด้านขาเข้าของขั้นตอนการอัดขั้นตอนที่ 5 กล่าวคือเมื่อเกิดการรั่วไหลเกิดขึ้น ทำให้ความดันด้านขาออก (ซึ่งเป็นตัวต้านทานการไหลออก) ของขั้นตอนการอัดขั้นตอนที่ 4 ลดลง อัตราการไหลจึงเพิ่มขึ้นชั่วขณะ ก่อนที่ระบบควบคุมจะปรับให้อัตราการไหลกลับมาที่ระดับเดิม แต่การรั่วไหลไปทำให้แก๊สที่ไหลเข้า (และความดันแก๊สที่ไหลเข้า) ขั้นตอนการอัดขั้นตอนที่ 5 ลดลง ทำให้อัตราการไหลของแก๊สด้านขาออกจากขั้นตอนการอัดขั้นตอนที่ 5 ลดต่ำลง

รูปที่ ๗ บริเวณที่เกิดเหตุ รูปนี้เป็นการมองจากทิศเหนือลงใต้ จุดที่เกิดการรั่วไหลอยู่ทางด้านหลังของ 5th Stage Suction Drum ที่อยู่ทางด้นขวามือของคนตรงกลางรูป (ดูรูปที่ ๑ ประกอบ)

ในช่วงระหว่างเวลา ๑๐.๐๓ - ๑๐.๐๕ น โอเปอร์เรเตอร์ที่ปฏิบัติงานอยู่ภายนอกหลายรายสังเกตเห็นการรั่วไหลของแก๊ส (จากระยะห่าง ทำให้ไม่สามารถระบุได้ว่ารั่วออกมาจากจุดใด) รู้แต่ว่าจุดรั่วไหลนั้นอยู่ระหว่าง suction drum ของขั้นตอนการอัดที่ 4 และที่ 5 และแก๊สที่รั่วนั่นพุ่งในทิศทางจากเหนือไปใต้ลอดใต้ pipe rack และโอเปอร์เรเตอร์รายหนึ่งรายงานว่ากลิ่นแก๊สที่รั่วออกมานั้น "sweet, like hydrocarbon smell" จึงได้ติดต่อห้องควบคุมให้หยุดการทำงานของเครื่องคอมเพรสเซอร์และให้ระบายทุกสิ่งออกสู่ระบบ flare ทันที การแจ้งเหตุนี้กระทำย้ำ 3 ครั้งแต่ไม่ได้รับการตอบรับกลับมา

ตรงจุดนี้รายงานการสอบสวนกล่าวว่าทางฝั่งห้องควบคุมหรือ control room นั้นได้ยินข้อมูลที่ว่านี้ แม้ว่าบางส่วนจะไม่ชัดเจน (เนื่องจากเสียงรบกวน) และได้ทำการปรึกษากับโอเปอเรเตอร์คนอื่นที่ควบคุมการทำงานส่วนอื่นอยู่ที่อยู่ในห้องควบคุมเดียวกันก่อนที่จะตัดสินใจหยุดการทำงานของคอมเพรสเซอร์และเปิดวาล์วระบายแก๊สออก flare แต่วาล์วระบายแก๊สออก flare ก็เปิดได้เพียงแค่บางส่วนก็เกิดการระเบิดขึ้น ส่วนสิ่งที่ทำให้แก๊สที่รั่วออกมาเกิดการจุดระเบิดนั้นไม่สามารถระบุแน่ชัดได้ เนื่องจากในบริเวณดังกล่าวนั้นเต็มไปด้วยหลายสิ่งที่มีความเป็นไปได้ว่าสามารถทำการจุดระเบิดได้

เครื่องคอมเพรสเซอร์นี้ ในช่วงเริ่มเดินเครื่องจะทำการควบคุมจากแผงควบคุมหน้างาน และเมื่อเดินเครื่องได้ปรกติแล้วก็จะส่งผ่านการควบคุมไปยังห้องควบคุม ตรงนี้ถ้ามองจากมุมมองของโอเปอร์เรเตอร์ที่อยู่ในห้องควบคุมเขาก็น่าจะงงอยู่เหมือนกันในเมื่อจากข้อมูลที่เขาเห็นก็คือเครื่องคอมเพรสเซอร์ทำงานได้ปรกติ แล้วอยู่ดี ๆ ก็มีคนร้องขอให้หยุดเครื่องทันที และนี่อาจเป็นสาเหตุให้เขาต้องใช้เวลาตัดสินใจครู่หนึ่งก่อนที่จะทำตามสิ่งที่ได้รับการร้องขอจากโอเปอร์เรเตอร์ที่อยู่ข้างนอก

การเข้าไปตรวจที่เกิดเหตุหลังเพลิงสงบเพื่อหาจุดเริ่มต้นของการรั่วไหลนั้น ทีมสอบสวนตรวจพบช่องเปิดที่เป็นไปได้จำนวน 52 ช่อง (ซึ่งต้องมาตรวจสอบกันอีกทีว่าเกิดก่อนการระเบิดหรือเป็นผลจากการระเบิดและเพลิงไหม้) ในจำนวนนี้ 18 ช่องถูกตัดทิ้งไปเพราะของไหลที่อยู่ภายในไม่ใช่เชื้อเพลิง 10 ช่องถูกตัดออกเพราะสิ่งที่อยู่ภายในนั้นแม้ว่าจะเป็นเชื้อเพลิงแต่ก็เป็นของเหลวที่มีจุดเดือดสูงและมีความดันไอต่ำ ไม่สามารถก่อตัวเป็นไอเชื้อเพลิงกับอากาศที่เข้มข้นมากพอจนจุดระเบิดได้ 9 ช่องถูกตัดออกไปเนื่องจากขนาดเล็กเกินไป และด้วยเวลาเพียง 4 นาทีไม่สามารถทำให้เกิดการรั่วไหลที่มากพอจนเกิดการระเบิดที่รุนแรงได้ 2 ช่องถูกตัดออกไปเพราะเป็นส่วนของ "Sour gas" (แก๊สที่มาจาก pyrolysis furnace จะมีสารประกอบกำมะปนอยู่ ดังนั้นแก๊สนี้จะมีกลิ่นไม่พึงประสงค์ แต่เนื่องจากโอเปอร์เรเตอร์รายงานว่าแก๊สที่รั่วออกมานั้นมีกลิ่น "Sweet" จึงแสดงว่าจุดรั่วไหลนั้นต้องอยู่ทางด้าน downstream ของระบบกำจัดแก๊สกรด (Acid gas removal system)) และอีก 8 ช่องถูกตัดออกเพราะนั้นหันไปในทิศทางที่ไม่ใช่ทิศทางที่พยานผู้เห็นเหตุการณ์เห็น ดังนั้นขณะนี้จึงเหลือตัวเลือกเพียงแค่ 5

จาก 5 ช่องทางที่เหลือ ผลการตรวจสอบเนื้อโลหะพบว่า 4 ช่องทางนั้นเป็นความเสียหายที่เกิดจากการโดนไฟคลอก (คือเกิดหลังจากการระเบิดและเพลิงลุกไหม้) ดังนั้นจึงเหลือเพียงแค่ตัวเลือกเดียวคือ รูที่ตัว swing check valve ขนาด 36 นิ้วที่อยู่ระหว่างระบบกำจัดแก๊สกรดและ suction drum ของขั้นตอนการอัดขั้นตอนที่ 5 ซึ่งปรกติรูนี้มีไว้สำหรับสอดเพลาที่มี counterweight และ air piston ติดตั้งอยู่ด้านนอก โดยด้านในนั้นจะสอดเข้ากับหูร้อย (ear) ของตัว valve disk โดยตัวเพลาและตัว valve disk จะถูกยึดเข้าด้วยการด้วยการใช้ลิ่มหรือสลัก (key) และ dowel pin

โครงสร้างของ swing check valve ตัวดังกล่าวแสดงในรูปที่ ๘ ตัว valve disk จะมีส่วนที่เป็นหูร้อยไว้สำหรับสอดเพลาที่ทำหน้าที่เป็นแกนหมุน โดยตัวเพลานี้แยกเป็น 2 ส่วน ส่วนที่อยู่ทางด้านซ้ายที่ในรูปเรียกว่า shaft นั้น เป็นส่วนที่ไม่ได้โผล่ยื่นออกมาข้างนอก ในขณะที่ส่วนที่อยู่ทางด้านขวาที่ในรูปเรียกว่า drive shaft นั้นจะโผล่ยื่นออกมาทางด้านนอก ทั้งตัว shaft และ drive shaft ถูกยึดเข้ากับหูร้อยของ valve disk ด้วยการเจาะรูในแนวรัศมี และสอด dowel pin เพื่อป้องกันไม่ให้มีการเคลื่อนตัวในแนวแกนยาวของเพลา (คือกันไม่ให้เพลาหลุดออกจากหูร้อย) แต่ตัว drive shaft นั้นจะมีการเซาะร่องที่ตัวเพลา (ที่เรียกว่า key seat) และที่ตัวหูร้อย (ที่เรียกว่า key way) เพื่อไว้สอดสลัก (key) (ดูรูปที่ ๖ ในตอนที่ ๑) รูปที่ลำตัววาล์วที่มีเพลาสอดอยู่นั้นต้องมีการใส่ปะเก็น (packing) เพื่อป้องกันแก๊สรั่ว แต่ยังต้องให้ตัวเพลาหมุนได้อย่างอิสระ

รูปที่ ๘ ภาพตัดขวางของวาล์วกันการไหลย้อนกลับตัวที่ทำให้เกิดการรั่วไหล

ทีนี้มาลองดูภาพตัดแนวขวางตรงส่วนหูร้อยและเพลา จะเห็นว่ามีชิ้นส่วนที่เชื่อมต่อระหว่างหูร้อยของ valve disk กับตัวเพลาอยู่ 2 ชิ้นด้วยกัน ดังนั้นเมื่อ valve disk มีการหมุนตัว การหมุนของ valve disk ก็จะไปดันตัว key หรือ dowel pin ส่วนที่ว่ามันจะไปดันตัวไหนก็ขึ้นอยู่กับว่าช่องว่างระหว่าง key กับ valve disk และ dowel pin กับ valve disk นั้น ช่องว่างไหนกว้างกว่ากัน จุดไหนมีช่องว่างที่แคบกว่าก็จะถูกดันก่อนและเป็นฝ่ายรับแรงเอาไว้ทั้งหมด โดยหลักแล้วเนื่องจากตัว key มีขนาดใหญ่และมีวัตถุประสงค์เพื่อส่งผ่านการหมุนของ valve disk ให้กลับเพลา (เพื่อให้เพลาหมุนตาม) ในขณะที่ตัว dowel pin นั้นมีวัตถุประสงค์เพียงแค่เพื่อป้องกันการเคลื่อนตัวในแนวแกนของเพลาเท่านั้น (ไม่ได้ออกแบบมาให้รับแรงเฉือนที่เกิดจากน้ำหนัก valve disk กด) ดังนั้นตัว key ควรจะมีขนาดที่พอดีกับช่อง key way และ key seat ส่วนช่องว่างระหว่าง dowel pin กับ valve disk นั้นควรที่จะมีขนาดที่ใหญ่กว่า

จากหลักฐานที่พบในที่เกิดเหตุที่พบตัว key นั้นตกค้างอยู่ในตัววาล์ว และส่วนหนึ่งของ dowel pin หักคาอยู่ที่ส่วนหูร้อยของ valve disk ในขณะที่ตัว driving shaft นั้นกระเด็นหลุดออกมาจากตัววาล์วนั้น ทีมสวนสวนพบว่าขนาดของ key นั้นเล็กกว่าช่อง key way และ key seat อยู่อย่างมีนัยสำคัญ คือเอา feeler gauge สอดได้สบาย (feeler gauge มีลักษณะเป็นแผ่นโลหะบางที่มีความหนาที่แน่นอน ใช้สำหรับวัดระยะหว่างระหว่างช่องว่าง ระยะห่างระหว่างช่องว่างจะอยู่ระหว่างชนาดของแผ่นโลหะที่หนาที่สุดที่สอดเข้าช่องนั้นได้ และขนาดของแผ่นโลหะที่บางที่สุดที่สอดเข้าช่องนั้นไม่ได้) ในขณะที่ dowel pin นั้นสวมพอดีเข้ากับขนาดรู

ดังนั้นเมื่อ valve disk มีการหมุนตัว sowel pin (ที่มีขนาดเล็กว่า key มาก) จึงรับแรงกระทำจาก valve disk เอาไว้ทั้งหมด และเป็นตัวส่งผ่านแรงนี้ไปยัง drive shaft แทนที่จะเป็นตัว key และเมื่อรับไม่ไหวตัว dowel pin ก็เลยขาด ประกอบกับการที่การประกอบตัว key นั้นค่อนข้างจะหลวม ทำให้เมื่อตัว drive shaft ถูกแรงดันภายในให้เคลื่อนตัวออกมาด้านนอก ตัว key ก็เลยหลุดออกจากร่องได้ง่าย drive shaft ทั้งชิ้นก็เลยหลุดออกมา ทำให้เกิดรูรั่วไหล (รูปที่ ๑๐)

รูปที่ ๙ Key ควรทำหน้าที่ส่งผ่านโมเมนต์การหมุนของ valve disk ไปยังเพลาที่ต่อเข้ากับ counterweight และ air piston ที่อยู่ภายนอก เพื่อให้เพลานั้นหมุนตามการหมุนตัวของ valve disk ในขณะที่ dowel pin ควรทำหน้าที่เพียงแค่ป้องกันไม่ให้ตัวเพลามีการเคลื่อนที่ตามแนวแกนเมื่อเทียบกับตัว valve disk (ไม่ให้เพลาหลุดออกจากตัววาล์ว)

รูปที่ ๑๐ วงกลมสีเหลืองในรูปบนคือรูที่ตัวเพลานั้นหลุดออกมาจากตัววาล์ว ส่วนแนวเส้นสีเหลืองในรูปล่างคือแนวแกนหมุนของ valve disk (ตัวเพลาไม่ได้ยาวตลอดแนว แต่แยกเป็นสองส่วนทางด้านซ้ายและขวา (รูปที่ ๘)

ตัว packing นั้นมันไม่ได้บีบรัดตัวเพลา มันทำหน้าที่เพียงแค่ป้องกันการรั่วไหลของแก๊สจากภายในสู่ภายนอกโดยที่ยังยอมให้เพลาหมุนได้อย่างอิสระ (พูดง่าย ๆ คือผิวสัมผัสระหว่าง packing กับเพลาควรต้องมีความลื่น ดังนั้นเมื่อ dowel pin ขาดและ key หลุดออกจากร่อง แรงดัน (ความดันภายในตัววาล์วคูณกับพื้นที่หน้าตัดเพลา) ก็เลยดันให้ตัวเพลาลื่นหลุดออกมาได้ง่าย

- เป็นเพียงแค่การซ่อมบำรุง ไม่ถือว่าเป็นอุบัติเหตุ ก็เลยไม่มีการสอบสวนหาสาเหตุ

จากการตรวจสอบประวัติการซ่อมบำรุงของทีมสอบสวน ก็ทำให้ได้พบข้อมูลที่น่าตกใจ กล่าวคือเหตุการณ์ทำนองเดียวกันนี้เคยเกิดขึ้นมาก่อนหน้านี้แล้ว ๔ ครั้ง กับ check valve แบบเดียวกัน เพียงแต่ไม่มีการรั่วไหลออกมาจนเกิดเพลิงไหม้ ความเสียหายที่เกิดขึ้นจึงถูกบันทึกว่าเป็นการซ่อมบำรุง โดยไม่มีการสอบสวนหาสาเหตุว่ามันเกิดได้อย่างไร

สองเหตุการณ์เกิดขึ้นที่ Shell facility ที่เมือง Norco ในปีพ.ศ. ๒๕๒๓ และ ๒๕๓๗ (ค.ศ. ๑๙๘๐ และ ๑๙๙๔) ในทั้งสองเหตุการณ์นั้นตัว disk หลุดออกมาจาก drive shaft แต่ตัว drive shaft ไม่ถูกดันจนหลุดออกมาจากตัววาล์ว เพียงแค่เคลื่อนตัวออกมาจนโอเปอร์เรเตอร์สังเกตเห็นได้ ทั้งนี้อาจเป็นเพราะว่าไม่ได้ใช้งานกับระบบความดันสูง โดยเหตุการณ์ในปี ๒๕๒๓ นั้นอาจเป็นไปได้ว่าไม่ได้มีการติดตั้ง dovel pin จากผู้ผลิตมาตั้งแต่ต้น ส่วนเหตุการณ์ในปี ๒๕๓๗ นั้นตัว dowel pin รับแรงเฉือนจนขาด

เหตุการณ์ในปีพ.ศ. ๒๕๓๔ (ค.ศ. ๑๙๙๑) เกิดขึ้นที่ระบบคอมเพรสเซอร์ของโรงงานที่เกิดเหตุนี้ โดยในระหว่างที่คอมเพรสเซอร์เกิดการ surge นั้น โอเปอร์เรเตอร์สังเกตุพบว่าวาล์วกันการไหลย้อนกลับที่อยู่ทางด้านขาเข้าของขั้นตอนการอัดที่ 3 (ซึ่งก็คือด้านขาออกของขั้นตอนการอัดที่ 2) มีการปิดกระแทกอย่างรุนแรงทุก ๆ 10-15 วินาที และท่อที่มีการสั่นทุก ๆ ครั้งที่วาล์วมีการปิดกระแทก นอกจากนี้จากการสังเกตโดยละเอียดพบว่ามีการรั่วไหลของแก๊สออกมาทางรูที่สอด drive shaft และตัว drive shaft มีการเคลื่อนตัวออกมาเล็กน้อย และยังตรวจพบการรั่วของแก๊สที่วาล์วกันการไหลย้อนกลับด้านขาออกของขั้นตอนการอัดที่ 4 และ 5 และเมื่อทำการหยุดเดินเครื่องเพื่อตรวจสอบก็พบว่า dowel pin ทั้งสองตัวของวาล์วกันการไหลย้อนกลับที่อยู่ทางด้านขาเข้าของขั้นตอนการอัดที่ 3 นั้นขาดและตัว key นั้นหายไป จึงได้ทำการเปลี่ยนชิ้นส่วน dowel pin และติดตั้ง key ใหม่ ส่วนวาล์วอีกสองตัวที่ตรวจพบการรั่วไหลนั้นก็ต้องทำการเปลี่ยน packing ซึ่งในการนี้ต้องมีการถอด dowel pin ออก และไม่พบว่าเกิดความเสียหายใด ๆ จึงได้ใช้ตัวเดิมใส่กลับเข้าไป

ส่วนวาล์วตัวที่เกิดเรื่องในเหตุการณ์นี้ ในช่วงเวลานั้นไม่ได้แสดงปัญหาใด ๆ จึงไม่ได้รับการตรวจสอบ และหลังจากการซ่อมบำรุงครั้งนี้ ก็ไม่ได้มีบันทึกการตรวจสอบหรือซ่อมบำรุงใด ๆ กับวาล์วกันการไหลย้อนกลับของหน่วยนี้อีก

เดือนธันวาคมปีพ.ศ. ๒๕๓๔ (ค.ศ. ๑๙๙๑) เกิดการรั่วไหลของโพรเพนที่หน่วยทำความเย็นด้วยโพรเพนของโรงงานแห่งหนึ่งในประเทศซาอุดิอาระเบีย (ที่ Shell เข้าไปเป็นเจ้าของร่วมด้วย ในเหตุการณ์นี้หลังจากวาล์วกันการไหลย้อนกลับ(แบบเดียวกัน) มีการเปิด-ปิดอย่างรุนแรงซ้ำไปมา ผลก็คือ drive shaft นั้นถูกดันให้เคลื่อนตัวออกจากตัววาล์ว แต่โชคดีที่ด้านข้างของวาล์วนั้นมีท่อไอน้ำอยู่ จึงทำให้ตัว drive shaft ทั้งชุดไม่หลุดออกมาจากตัวเพลา โดยยังมีส่วนปลายค้างอยู่ในรูประมาณ 70 มิลลิเมตร แต่ถึงกระนั้นก็ทำให้มีแก๊สโพรเพนรั่วไหลออกมา โชคดีที่สองของเหตุการณ์นี้คือไม่มีการระเบิดเกิดขึ้น

จากการตรวจสอบตัววาล์วพบว่า dowel pin นั้นฉีกขาด และตัว key นั้นหลุดออกจาก key way ซึ่งเป็นปรากฏการณ์แบบเดียวกับที่เกิดขึ้นในการระเบิดนี้

เมื่ออุปกรณ์มีความเสียหายที่ไม่ได้เกิดจากการเสื่อมสภาพตามการใช้งานเกิดขึ้น การทำเพียงแค่การซ่อมมันให้กลับมาทำหน้าที่ได้เหมือนเดิมโดยไม่มีการพิจารณาว่าทำไมจึงเกิดความเสียหายนั้น ไม่ได้ช่วยรับรองว่าความเสียหายแบบเดียวกันจะเกิดขึ้นกับอุปกรณ์ตัวเดิมนี้ หรืออุปกรณ์แบบเดียวกันนี้ที่ใช้ที่อื่น การพิจารณาว่าอะไรจะเกิดขึ้นตามมาได้ถ้าตรวจไม่พบความเสียหายนั้นจึงไม่ได้รับการพิจารณา (อย่างเช่นในกรณีนี้คืออะไรจะเกิดขึ้นถ้า drive shaft หลุดออกมาจากตัววาล์ว) จึงเป็นเรื่องสำคัญที่ควรได้รับการพิจารณา นอกจากนี้เหตุการณ์นี้ยังแสดงให้เห็นถึงการส่งผ่านประสบการณ์ให้กับผู้อื่น จะเห็นว่าจากเหตุการณ์แรกที่มีบันทึกไว้จนกระทั่งเกิดเหตุการณ์แบบเดียวกันที่ทำให้เกิดความเสียหายขนาดใหญ่นั้น ห่างกันถึง ๑๗ ปี หรือแม้แต่เหตุการณ์แบบเดียวกันที่เกิดขึ้นที่เดียวกันในเวลาห่างกันเพียงแค่ ๖ ปี ก็ยังถูกลืมเลือน

วันอาทิตย์ที่ 20 ธันวาคม พ.ศ. 2563

UVCE case 7 Shell Olefin Plant 2540 (1997) ตอนที่ ๑ MO Memoir : Sunday 20 December 2563

ตอนสายของวันอาทิตย์ที่ ๒๒ มิถุนายน พ.ศ. ๒๕๔๐ (ค.ศ. ๑๙๙๗) เวลาประมาณ ๑๐ โมงเศษ ได้เกิดการรั่วไหลของแก๊สก่อนที่จะเกิดการระเบิดตามมาในอีกไม่กี่นาที ณ โรงงานผลิตโอเลฟินส์ของบริษัท Shell ในมลรัฐเท็กซัส ประเทศสหรัฐอเมริกา อุบัติเหตุครั้งนี้แม้ว่าจะไม่มีผู้เสียชีวิตแต่ก็มีหลายประเด็นที่น่าสนใจ เช่นสาเหตุที่ทำให้เกิดการรั่วไหลนั้นต้นตอมาจากความเสียหายของชิ้นส่วนเล็ก ๆ ชิ้นส่วนหนึ่ง และความเสียหายดังกล่าวก็ไม่ได้เกิดขึ้นครั้งแรก แต่เคยได้เกิดขึ้นก่อนหน้านี้หลายครั้งแม้ว่าจะเกิดที่โรงงานอื่นแต่ก็เป็นของเครือบริษัทเดียวกัน ซึ่งเป็นการแสดงให้เห็นว่าข้อมูลอุบัติเหตุที่เกิดก่อนหน้านั้นไม่ได้มีการเผยแพร่ให้รับทราบกันอย่างทั่วถึง และมีการประเมินผลกระทบที่ตามมาต่ำเกินไป อาจเป็นเพราะว่าเหตุที่เกิดก่อนหน้านี้มีการตรวจพบก่อนที่จะเกิดความเสียหายรุนแรงตามมา

เรื่องที่นำมาเล่านี้นำมาจาก EPA/OSHA Joint Chemical Accident Investigation Report : Shell Chemical Company, Deer Park, Texas เผยแพร่เมื่อเดือนมิถุนายน พ.ศ. ๒๕๔๑ (ค.ศ. ๑๙๙๘) ที่เป็นรายงานการสอบสวนที่เกิดขึ้นที่ Olefin Plant Number III (OP-III) แต่ก่อนอื่นจะขอปูพื้นฐานกระบวนการผลิตเอทิลีน โดยจะเน้นเฉพาะส่วนเพิ่มความดันให้กับแก๊ส ซึ่งเป็นจุดต้นตอของการรั่วไหลในเหตุการณ์นี้ แต่สำหรับผู้ที่สนใจสามารถอ่านเพิ่มเติมได้ในบทความเรื่อง

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๙ Charge gas compression ภาค ๑" (Memoir ปีที่ ๘ ฉบับที่ ๑๑๗๗ วันอาทิตย์ที่ ๒๙ พฤษภาคม ๒๕๕๙)

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๑๐ Charge gas compression ภาค ๒" (Memoir ปีที่ ๘ ฉบับที่ ๑๑๗๘ วันพฤหัสบดีที่ ๒ มิถุนายน ๒๕๕๙) และ

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๑๑ Charge gas compression ภาค ๓" (Memoir ปีที่ ๘ ฉบับที่ ๑๑๘๑ วันพุธที่ ๘ มิถุนายน ๒๕๕๙)

ในการผลิตเอทิลีน (Ethylene C2H4 หรือ Ethene) นั้นจะนำไฮโดรคาร์บอนโมเลกุลใหญ่มาให้ความร้อนใน Pyrolysis furnace จนไฮโดรคาร์บอนโมเลกุลใหญ่นั้นแตกออกเป็นโมเลกุลเล็กลงจนกลายเป็นเอทิลีนร่วมกับโอเลฟินส์ตัวอื่น เช่นโพรพิลีน (Propylene C3H6 หรือ Propene) เพื่อให้ปฏิกิริยาดำเนินไปข้างหน้าได้ดี ความดันการเกิดปฏิกิริยาจึงไม่สูงมาก (มากกว่าความดันบรรยากาศไม่มาก ทั้งนี้เพราะในปฏิกิริยานี้จำนวนโมลของผลิตภัณฑ์เพิ่มสูงกว่าสารตั้งต้น) การผลิตในส่วนนี้เป็นส่วนที่ใช้อุณหภูมิสูง (Hot side) ก็เรียกว่าตั้งแต่ระดับประมาณอุณหภูมิห้องไปจนถึงเกือบ 1000ºC (ขึ้นกับชนิดไฮโดรคาร์บอนที่ใช้เป็นสารตั้งต้น)

แก๊สผลิตภัณฑ์ร้อนที่ออกมาจาก Pyrolysis furnace นั้นจะถูกลดอุณหภูมิให้ต่ำลง (โดยใช้การดึงเอาความร้อนกลับไปใช้ประโยชน์) ก่อนจะเข้าสู่ขั้นตอนการอัดเพิ่มความดัน การอัดเพิ่มความดันนี้ก็เพื่อทำให้สามารถทำให้แก๊สเป็นของเหลวได้ที่อุณหภูมิที่ไม่ต่ำเกินไป และให้มีความดันมากพอที่แก๊สจะไหลผ่านระบบกลั่นแยกต่าง ๆ ไปจนถึงปลายทางสายการผลิต การผลิตส่วนนี้เป็นส่วนที่ใช้อุณหภูมิต่ำ ก็เรียกว่าประมาณอุณหภูมิห้องไปจนต่ำสุดก็ประมาณระดับ -100ºC

เพื่อที่จะรักษาประสิทธิภาพการอัดแก๊สและป้องกันไม่ให้เอทิลีนเกิดปฏิกิริยาถ้าอุณหภูมิแก๊สสูงเกินไป การอัดแก๊สให้ได้ระดับความดันที่ต้องการจึงต้องค่อย ๆ เพิ่มความดันทีละขั้น อย่างเช่นในโรงงานที่เกิดเหตุนี้ใช้การอัด 5 ขั้นตอนด้วยกัน โดยในระหว่างแต่ละขั้นตอนการอัดนั้นจะมีการแยกเอาส่วนที่เป็นของเหลวที่ควบแน่นออกมาเมื่อลดอุณหภูมิแก๊สความดันสูงที่ออกมาจากขั้นตอนการอัดแต่ละขั้น รูปที่ ๑ เป็นแผนผังของโรงงานที่เกิดเหตุ ส่วนรูปที่ ๒ เป็นแผนผังของหน่วยเพิ่มความดัน

รูปที่ ๑ แผนผังหน่วยการผลิตที่เกิดเหตุ ส่วนด้านทิศใต้เป็นส่วนที่เรียกว่า "Hot side" คือเป็นด้านที่รับวัตถุดิบ (ไฮโดรคาร์บอน) เข้ามา ให้ความร้อนใน Pyrolysis furnace เพื่อให้โมเลกุลไฮโดรคาร์บอนโมเลกุลใหญ่แตกตัวเป็นเอทิลีน หน่วยนี้จะทำงานที่ความดันต่ำ (สูงกว่าบรรยากาศไม่มาก) จากนั้นแก๊สที่ออกจาก Pyrolysis furnace จะเข้าสู่หน่วยเพิ่มความดัน (Process gas compressor) ที่อยู่ทางด้านทิศเหนือ (เรียกว่า "Cold side") เพื่อเพิ่มความดันแก๊สให้สูงขึ้นก่อนส่งต่อเข้าระบบทำความเย็น และการกลั่นแยกต่อไป

รูปที่ ๒ แผนผังกระบวนการอัดแก๊สที่มีการอัดเพิ่มความดัน 5 ขั้นตอนด้วยกัน

กระบวนการอัดแก๊สของโรงงานนี้เป็นกระบวนการอัด 5 ขั้นตอน (รูปที่ ๒) ใช้กังหันไอน้ำ (Steam turbine) ขับเคลื่อนคอมเพรสเซอร์ 5 ตัวที่ต่อร่วมแกนกัน การผลิตเอทิลีนนั้นเป็นกระบวนการที่ใช้พลังงานความร้อนสูง และเมื่อได้ผลิตภัณฑ์แล้วก็ต้องลดอุณหภูมิให้ต่ำลงก่อนทำการกลั่นแยก การลดอุณหภูมินี้ก็มีทั้งการนำความร้อนนั้นไปผลิตไอน้ำความดันสูงและถ่ายเทให้กับสายอื่นที่ต้องการอุ่นให้ร้อนขึ้น ส่วนหนึ่งของไอน้ำความดันสูงที่ได้มาก็นำมาใช้ในการขับเคลื่อนเครื่องอัดแก๊ส (จะได้ลดการพึ่งพาพลังงานไฟฟ้าไปด้วยในตัว)

แก๊สที่ผ่านการอัดแต่ละขั้นตอนจะมีอุณหภูมิสูงขึ้น ซึ่งต้องลดให้ต่ำลงก่อนที่จะเข้าสู่ขั้นตอนถัดไป (ในรูปที่ ๒ ไม่ได้เขียนส่วนที่เป็นเครื่องแลกเปลี่ยนความร้อนเอาไว้) แก๊สร้อนที่มีความดันสูงขึ้นเมื่อทำให้เย็นลงก็จะมีไฮโดรคาร์บอนหนักบางส่วนควบแน่นออกมา ซึ่งต้องแยกออกจากแก๊สก่อนที่จะเข้าสู่ขั้นตอนอัดถัดไปโดยใช้ Liquid knock-out drum

อุปกรณ์สำคัญอีกตัวหนึ่งที่ต้องติดตั้งไว้ทางท่อด้านขาออกของปั๊มหรือคอมเพรสเซอร์ก็คือวาล์วกันการไหลย้อนกลับ (check valve หรือ non-return valve) ทั้งนี้เพราะด้านขาออกมีความดันสูงกว่าด้านขาเข้า ถ้าหากปั๊มหรือคอมเพรสเซอร์หยุดทำงาน (ไม่ว่าจะเป็นด้วยการกดปุ่มหยุดหรือไฟฟ้าดับก็ตาม) ของไหลความดันสูงทางด้านขาออกก็จะไหลย้อนกลับเข้าสู่ตัวปั๊มหรือคอมเพรสเซอร์ได้ และสามารถทำให้อุปกรณ์หมุนกลับทิศทาง ซึ่งถ้าหมุนด้วยความเร็วรอบสูงเกินไปก็จะเกิดความเสียหายต่อตัวอุปกรณ์ได้ หรืออาจทำให้ระบบท่อและ/หรืออุปกรณ์ด้านขาเข้าที่ไม่ได้ออกแบบไว้รองรับความดันที่สูงเกินนั้นเกิดความเสียหายได้

รูปที่ ๓ เหตุการณ์ในขณะเริ่มต้นเดินเครื่องเครื่องคอมเพรสเซอร์ใหม่หลังไฟฟ้าดับ

ทีนี้เราลองกลับมาดูเหตุการณ์ที่เกิดขึ้นที่โรงโอเลฟินส์ดังกล่าว เริ่มจากการที่เกิดเหตุไฟฟ้าดับเมื่อเวลาประมาณ ๐๒.๑๕ น อันเป็นผลจากหม้อแปลงไฟฟ้าระเบิดจากพายุฝนฟ้าคะนอง ในช่วงเวลาดังกล่าวระบบไฟฟ้าสำรองได้ทำงานเพื่อจ่ายไฟให้กับระบบที่สำคัญบางส่วน ในช่วงเวลานี้ยังมี pyrolysis furnace บางตัวทำงานอยู่ ซึ่งจำเป็นต้องให้มีแก๊สไหลผ่านเพื่อรับความร้อน แต่เนื่องจากคอมเพรสเซอร์ที่จะดูดเอาแก๊สนั้นส่งต่อไปยังหน่วยกลั่นแยกไม่ทำงาน จึงต้องระบายแก๊สออกไปเผาทิ้งที่ระบบ flare ซึ่งถือว่าเป็นการสูญเสียและก่อให้เกิดควันดำมาก (เพราะหม้อไอน้ำที่ผลิตไอน้ำเพื่อไปเจือจางการเผาไหม้ที่ปากปล่อง flare หยุดทำงาน) ดังนั้นโอเปอร์เรเตอร์จึงได้ตัดสินใจที่จะเริ่มเดินเครื่องคอมเพรสเซอร์ใหม่อีกครั้งเพื่อลดการสูญเสียและปัญหาการเกิดควันดำ เนื่องจากคอมเพรสเซอร์ขับเคลื่อนด้วยการใช้กังหันไอน้ำ ดังนั้นการเริ่มเดินเครื่องจึงเริ่มด้วย "Slow roll" หรือค่อย ๆ หมุนอย่างช้า ๆ ก่อน (รูปที่ ๓)

มอเตอร์ไฟฟ้ากระแสสลับพวก Induction motor ที่ใช้งานกันอย่างแพร่หลายที่สุดจะหมุนด้วยความเร็วรอบคงที่ที่ขึ้นอยู่กับความถี่กระแสไฟฟ้า ในช่วงที่มอเตอร์เริ่มหมุนนั้นกระแสจะไหลเข้าขดลวดสูงมาก แต่เมื่อหมุนจนได้ความเร็วรอบแล้วกระแสจะลดต่ำลงมาก ดังนั้นอุปกรณ์ที่ใช้มอเตอร์พวกนี้ขับเคลื่อน ตอนเริ่มเดินเครื่องจึงต้องทำให้มอเตอร์หมุนจนถึงความเร็วรอบให้เร็วที่สุด และให้มี load ตอนเริ่มเดินเครื่องต่ำสุด เพื่อไม่ให้กระแสตอนเริ่มเดินเครื่องนั้นสูงมากเกินไป

ด้วยเหตุนี้ในกรณีของปั๊มหอยโข่ง เวลาเริ่มเดินเครื่องจึงมักจะปิดวาล์วด้านขาออกของปั๊มหรือเปิด minimum flow line เอาไว้ เพื่อให้มอเตอร์มี load ต่ำสุดซึ่งจะเกิดขึ้นเมื่ออัตราการของของเหลวเป็นศูนย์ ในกรณีของคอมเพรสเซอร์ที่ถ้าเป็นการอัดอากาศธรรมดา ก็จะใช้การเปิดท่อทางออกสู่บรรยากาศเพื่อให้มอเตอร์มี load ต่ำสุดเช่นกัน เพราะเป็นการดูดอากาศที่ความดันบรรยากาศและปล่อยออกไปที่ความดันบรรยากาศเช่นเดิม

แต่ถ้าเป็นการขับเคลื่อนด้วยกังหันไอน้ำจะแตกต่างออกไป เพราะไอน้ำจะทำให้ตัวกังหันไอน้ำร้อนขึ้น และเมื่อโลหะร้อนก็จะมีการขยายตัว ดังนั้นเพื่อป้องกันความเสียหายที่เกิดขึ้นจากชิ้นส่วนโลหะแต่ละชิ้นส่วนขยายตัวแตกต่างกัน จึงจำเป็นที่ต้องให้อุปกรณ์ค่อย ๆ ร้อนขึ้นอย่างช้า ๆ (ทำนองเดียวกับการเปิดไอน้ำเข้าระบบท่อที่เย็น ที่ต้องค่อย ๆ เปิดเพื่ออุ่นท่อให้ร้อนและลดการเกิด water hammer เนื่องจากไอน้ำควบแน่นในปริมาณมากในระบบท่อที่เย็น) ขั้นตอนนี้คือขั้นตอน "Slow roll" ที่เขียนไว้ในรูปที่ ๓ ซึ่งขั้นตอนทั้งหมดจะกินเวลาอย่างน้อย 2 ถึง 4 ชั่วโมง

พวก rotating machinery หรือเครื่องจักรกลที่มีชิ้นส่วนที่หมุนจะมีช่วงความเร็วเชิงมุมของการหมุนช่วงหนึ่งที่เรียกว่า "critical speed" (รูปที่ ๔) ชิ้นส่วนแต่ละชิ้นจะมีการสั่นด้วยความถี่ธรรมชาติที่ค่า ๆ หนึ่ง และเมื่อใดก็ตามที่ความเร็วเชิงมุมนี้สอดคล้องกับความถี่การสั่นตามธรรมชาติ ก็จะทำชิ้นส่วนนั้นเกิดการสั่นที่รุนแรงขึ้น ถ้าความเร็วรอบการหมุนอยู่นอกช่วงนี้ (ไม่ว่าจะเป็นช้ากว่าหรือเร็วกว่า) การสั่นก็จะลดลง ในกรณีของอุปกรณ์ที่สามารถเพิ่มความเร็วรอบการหมุนได้เร็ว ช่วงเวลาที่ชิ้นส่วนมีความเร็วรอบในช่วง critical speed ก็จะสั้น แต่ถ้าเป็นกรณีของอุปกรณ์ที่ต้องเพิ่มความเร็วรอบการหมุนอย่างช้า ๆ เช่นกรณีของกังหันแก๊สในที่นี้ ช่วงเวลาที่ความเร็วรอบการหมุนอยู่ในช่วง critical speed ก็จะนานมากขึ้น ด้วยเหตุนี้เพื่อป้องกันความเสียหายที่อาจเกิดขึ้นกับตัวอุปกรณ์ จึงได้มีการติดตั้งอุปกรณ์ตรวจวัดการสั่นสะเทือน (vibration sensor) ที่จะหยุดการทำงานของอุปกรณ์ถ้าตรวจพบการสั่นที่สูงมากเกินไป

และในระหว่างการเริ่มต้นเดินเครื่องคอมเพรสเซอร์นี้ vibration sensor ก็ได้ตรวจพบการสั่นสะเทือนที่มากเกินไป จึงได้ทำการหยุดการทำงานของคอมเพรสเซอร์ เหตุการณ์ดังกล่าวเกิดขึ้นหลายครั้ง แต่เนื่องจากโอเปอร์เรเตอร์เข้าใจว่าสาเหตุเกิดจากการเร่งความเร็วรอบผ่าน critical speed ที่ช้าเกินไป จึงได้ทำการ reset สัญญาณและเริ่มต้นเดินเครื่องใหม่

อนึ่งในรายงานการสอบสวนบันทึกไว้ว่า โอเปอร์เรเตอร์ที่ทำหน้าที่เดินเครื่องคอมเพรสเซอร์นั้นได้ข้ามขั้นตอนหนึ่งไปก็คือการระบายของเหลวที่ควบแน่นออกจากระบบ เพราะถ้ามีของเหลวเหล่านี้สะสมมากเกินไป มันจะสามารถหลุดรอดเข้าไปในตัวกังหันไอน้ำและคอมเพรสเซอร์ได้ ซึ่งจะนำไปสู่การสั่นอย่างรุนแรง ค่าการสั่นปรกติจะอยู่ที่ 0.2 mil แต่ตรวจวัดการสั่นได้ถึง 1.0 mil

หน่วย "mil" ในที่นี้คือ 1 ใน 1000 นิ้วนะ ไม่ใช่มิลลิเมตรที่เขียนย่อว่า mm

รูปที่ ๔ ช่วงความเร็ววิกฤตหรือ Critical speed ของ rotating machinery

เมื่อปั๊มหรือคอมเพรสเซอร์หยุดทำงานนั้น ของไหลทางด้านความดันสูงจะไหลย้อนกลับ การไหลย้อนกลับนี้จะทำให้วาล์วกันการไหลย้อนกลับปิดตัว ในกรณีของวาล์วกันการไหลย้อนกลับแบบ swing check valve นั้น ตัว valve disc จะปิดตัวเร็วแค่ไหนก็ขึ้นอยู่กับความดันด้านขาเข้าว่าลดลงเร็วแค่ไหน ถ้าของไหลเป็นแก๊ส ความเร็วในการปิดก็จะเร็วกว่ากรณีที่ของไหลเป็นของเหลว (แบบเดียวกับที่เราเห็นการเติมของเหลวเข้าไปใน pressure gauge เพื่อหน่วงการสั่นของอุปกรณ์เวลาที่ใช้กับระบบที่มีการเปลี่ยนแปลงความดันอย่างรวดเร็ว) และในส่วนของคอมเพรสเซอร์นั้นยังมีเรื่องการเกิด surging เข้ามาเกี่ยวข้องอีก (อ่านเพิ่มเติมได้ในเรื่อง "Centrifugal compressor กับการเกิด Surge และการป้องกัน" Memoir ปีที่ ๕ ฉบับที่ ๕๗๘ วันเสาร์ที่ ๑๖ กุมภาพันธ์ ๒๕๕๖)

รูปที่ ๕ ตัวอย่างรูปร่างหน้าตาของ Pneumatically-assisted swing check valve ที่มีกระบอกสูบลมช่วยในการดึงให้วาล์วอยู่ในตำแหน่งปิดสนิท/ป้องกันการกระแทกของ valve disc ในขณะปิด ตัวกระบอกสูบลมนี้จะมีวาล์วปรับแต่งการปิดว่าจะให้ปิดช้าหรือเร็วแค่ไหน ส่วน counterweight หรือน้ำหนักถ่วงนั้นถ้าติดตั้งอยู่ทางฝั่งเดียวกับ valve disc ก็จะช่วยให้วาล์วเคลื่อนตัวเพื่อปิดได้ง่ายขึ้น แต่ก็จะทำให้ต้องใช้แรงดันมากขึ้นเพื่อดันให้วาล์วเปิด ในทางกลับกันถ้าน้ำหนักถ่วงนั้นอยู่คนละฟากของ valve disc ก็จะช่วยให้วาล์วเปิดได้ง่ายขึ้น แต่ก็จะปิดได้ยากขึ้น (รูปจาก https://www.made-in-china.com)

รูปที่ ๕ เป็นตัวอย่างหนึ่งของ swing check valve ที่มีอุปกรณ์ประกอบคือ Counter weight หรือน้ำหนักถ่วง และ Pneumatic cylinder หรือกระบอกสูบลม ตัวน้ำหนักถ่วงนี้ไม่เพียงแต่จะใช้ช่วยในการเปิดหรือปิดวาล์ว (ขึ้นอยู่กับว่าติดตั้งน้ำหนักถ่วงไว้ทางด้านไหน) แต่ยังช่วงแสดงให้เห็นด้วยว่าในขณะนั้นวาล์วเปิดหรือปิดอยู่ ส่วนตัวกระบอกสูบลมนั้นก็ทำหน้าที่ทั้งช่วยเพิ่มแรงต้านทานการเปิด (ลดปัญหาการเปิดปิดอย่างรวดเร็ว) และยังช่วงหน่วงการปิด (ไม่ให้ปิดกระแทกแรง) เพลา (shaft) ที่ติดตั้งน้ำหนักถ่วงนี้อาจเป็นเพลาตัวเดียวกับที่ติดตั้ง valve disc หรืออาจเป็นคนละตัวกัน

ตัว valve disc อยู่ข้างในตัววาล์วในขณะที่ counter weight อยู่ข้างนอก ดังนั้นเพื่อให้ counter weight หมุนไปตามการเคลื่อนตัวของ valve disc จึงจำเป็นที่ต้องให้การเคลื่อนตัวของ valve disc นั้นทำให้เพลาที่ใช้เป็นแกนหมุน หมุนตามไปด้วย ดังนั้นจำเป็นต้องมีการตรึงตัว valve disc และแขนติดตั้ง counter weight เข้ากับตัวเพลา วิธีการหนึ่งที่ใช้กันที่เหมาะสำหรับการส่งกำลังและสามารถรับแรงได้ดีคือการใช้ระบบ key, key seat/key way (รูปที่ ๖) โดยตัว key นั้นทำหน้าที่ส่งผ่านแรงการหมุนจากชิ้นส่วนหนึ่งไปยังอีกชิ้นส่วนหนึ่ง

รูปที่ ๖ ระบบ key, keyseat และ keyway ที่ใช้ส่งผ่านการหมุนระหว่างชิ้นส่วนสองชิ้นที่สวมเข้าด้วยกัน (ภาพจาก https://www.lovejoy-inc.com)

นอกจากนี้ตรงจุดที่เพลาโผล่ทะลุตัววาล์วออกมา ก็ต้องมีการป้องกันไม่ให้ของไหลข้างในรั่วไหลออกมาข้างนอกได้ โดยที่ยังต้องให้เพลานั้นหมุนได้โดยมีแรงเสียดทานน้อยที่สุด เทคนิคหนึ่งที่ใช้กันตรงนี้ก็คือการใช้ stuffing box (สำหรับผู้ที่ยังไม่รู้จัก stuffinb box ของให้อ่านรายละเอียดเพิ่มเติมได้ใน Memoir ปีที่ ๙ ฉบับที่ ๑๓๑๐ วันพฤหัสบดีที่ ๑๒ มกราคม ๒๕๖๐ เรื่อง "Piping and Instrumentation Diagram (P&ID) ของอุปกรณ์ ตอน Auxiliary piping ของปั๊มหอยโข่ง")

สำหรับตอนที่ ๑ นี้ก็ถือว่าเป็นการแนะนำให้รู้จักกับตัวละครสำคัญที่เกี่ยวข้องในเหตุการณ์ก่อนก็แล้วกัน ส่วนที่ว่าแล้วมันเกิดอะไรขึ้นต่อก็ขอเอาไว้เล่าต่อในตอนที่ ๒