แสดงบทความที่มีป้ายกำกับ compressor แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ compressor แสดงบทความทั้งหมด

วันอาทิตย์ที่ 24 มีนาคม พ.ศ. 2567

อันตรายใน Analyser House เรื่องที่ ๒ MO Memoir : Sunday 24 March 2567

อุบัติเหตุจำนวนไม่น้อยในอุตสาหกรรมเกิดจากการต่อท่อผิด ทั้ง ๆ ที่การป้องกันความผิดพลาดดังกล่าวทำได้ง่ายด้วยการใช้ข้อต่อที่แตกต่างกัน (เช่น ชนิด (ตัวผู้/ตัวเมีย), ทิศทางการหมุน (เวียนซ้าย/เวียนขวา) หรือขนาดที่ไม่เท่ากัน) ส่วนการทาสีน่าจะจัดเป็นมาตรการเฉพาะหน้ามากกว่า เพราะเมื่อเวลาผ่านไปสีที่ทาไว้ก็หลุดร่อนได้ หรือการทำงานในที่มีแสงสว่างน้อยก็ทำให้การมองสีไม่ชัดเจนได้

เรื่องที่นำมาเล่าในวันนี้ก็เกิดจากการต่อท่อสลับกัน แต่เนื่องจากในบทความนั้นมีการกล่าวถึงโครงสร้างวาวล์ตัวหนึ่ง ก็เลยจะขอปูพื้นเรื่องชื่อเรียกโครงสร้างวาล์วให้กับผู้ที่กำลังศึกษาอยู่ก่อน

รูปที่ ๑ ตัวอย่างโครงสร้างและชื่อชิ้นส่วนต่าง ๆ ของวาล์วควบคุม (control valve) "Gland" คือบริเวณในกรอบสีเขียวที่มี valve stem สอดผ่านและมี gland packing อุดกันรั่ว โดยที่ยังยอมให้ valve stem เคลื่อนที่ขึ้นลงในแนวเส้นตรงได้ (รูปจาก https://instrumentationtools.com/basic-parts-control-valves/)

"Valve stem" เป็นชิ้นส่วนที่เชื่อมต่อเข้ากับโครงสร้างที่ทำหน้าที่ปิดกั้นการไหล เช่น valve plug ในกรณีของ globe valve (ดังรูปที่ ๑ ข้างบน) หรือลูกบอล ในกรณีของ ball valve ถ้าเป็น globe valve ตัว valve stem จะเคลื่อนที่ขึ้นลงเพื่อควบคุมระดับการยกตัวของ valve plug แต่ถ้าเป็น ball valve ตัว valve stem จะหมุนไปมาเพื่อควบคุมระดับการเปิดของลูกบอล

ช่องทางที่ให้ valve stem สอดผ่านนี้ต้องยอมให้ valve stem เคลื่อนตัวได้อย่างอิสระ และในขณะเดียวกันก็ต้องสามารถป้องกันไม่ให้ของไหลภายในรั่วไหลออกมาภายนอกได้ ดังนั้นบริเวณนี้จึงมีการใส่ "gland packing" (บ้านเราเรียกว่า "ปะเก็นเชือก") ที่มีการผสมวัสดุที่มีความลื่นเคลือบผิวอยู่ ในรูปที่ ๑ นั้นตัว gland packing ถูกกดอัดไว้ด้วย packing follower ที่ถูกกดเอาไว้ด้วย packing flange อีกที ถ้าขันนอตอัด packing ลงไป ตัว gland packing ก็จะถูกบีบอัดและขยายตัวออกทางด้านข้างทำให้ปิดกั้นการรั่วไหล แต่การอัดแน่นที่มากเกินไปก็จะทำให้ตัว valve stem เคลื่อนตัวได้ยากมากขึ้นหรือขยับตัวไม่ได้ ตรงบริเวณนี้เมื่อใช้งานไปนานเข้าเมื่อ gland packing เริ่มเสื่อมสภาพหรือน็อตที่ขันกดนั้นเกิดการคลายตัวก็จะมีการรั่วไหลได้ การแก้ปัญหาเบื้องต้นทำได้ด้วยการขันอัดแน่นเข้าไปอีกจนกว่าจะได้เวลาเปลี่ยน gland packing

รูปที่ ๒ คำบรรยายเหตุการณ์ ส่วนภาพประกอบนั้นเข้าใจว่าเพื่อให้ผู้อ่านเห็นภาพการเดินท่อ Loading/Unloading valve

คอมเพรสเซอร์เป็นอุปกรณ์ที่ใช้ในการอัดแก๊ส อุปกรณ์ขับเคลื่อนหลักที่ใช้กันมากที่สุดในปัจจุบันคือมอเตอร์ไฟฟ้ากระแสสลับ (เกือบทั้งหมดที่ใช้กันคือมอเตอร์ไฟฟ้าเหนี่ยวนำหรือ induction motor) ที่จำเป็นต้องให้มอเตอร์มีภาระงาน (load) ต่ำสุดเมื่อเริ่มหมุน เพราะช่วงเวลาดังกล่าวมอเตอร์จะกินกระแสไฟฟ้ามาก (ประมาณ 6 เท่าตัวของกระแสการทำงานปรกติ) เป็นช่วงเวลาสั้น ๆ และวิธีการหนึ่งที่ใช้กันก็คือให้คอมเพรสเซอร์ทำงานที่ความดันด้านขาเข้าเท่ากับความดันด้นขาออก (คือเดินตัวเปล่าโดยไม่มีการอัดแก๊ส)

ในกรณีที่ความต้องการแก๊สด้านขาออกนั้นไม่คงที่ การให้คอมเพรสเซอร์ทำงานเต็มที่ตลอดเวลาแล้วไปควบคุมระดับการเปิดวาล์วด้านขาออกจะเป็นการสิ้นเปลืองพลังงาน วิธีการหนึ่งที่ใช้กันคือการให้คอมเพรสเซอร์อัดแก๊สเข้าถังเก็บและจ่ายแก๊สจากถังเก็บออกไป พอความดันแก๊สในถังสูงถึงค่าที่กำหนดไว้ก็ให้คอมเพรสเซอร์หยุดทำงาน และพอความดันแก๊ในถังเก็บลดต่ำลงจนถึงระดับหนึ่งก็ให้คอมเพรสเซอร์เริ่มทำงานใหม่ การทำงานแบบนี้เป็นสิ่งที่เราเห็นกับเครื่องอัดอากาศขนาดเล็กที่ใช้งานกันทั่วไป (ที่เราเรียกว่าปั๊มลม) แต่เพื่อไม่ให้มอเตอร์ไฟฟ้ากินกระแสไฟมากตอนคอมเพรสเซอร์เริ่มทำงานใหม่ ก็จะมีการติดตั้งวาล์วตัวหนึ่งไว้ด้านขาออก เพื่อระบายแก๊สด้านขาออกทิ้งให้ความดันด้านขาออกลดต่ำลง (แต่ยังป้องกันไม่ให้แก๊สในถังเก็บด้านความดันสูงไหลย้อนกลับ) วาล์วตัวนี้มีชื่อว่า loader/unloader (หรือ loading/unloading) valve

รูปแบบการทำงานของวาล์วตัวนี้มีหลายรูปแบบ การระบายแก๊สด้านขาออกทิ้งก็เป็นรูปแบบหนึ่ง แต่ถ้าแก๊สนั้นปล่อยออกสู่อากาศโดยตรงไม่ได้ (เช่นเป็นแก๊สพิษหรือแก๊สเชื้อเพลิง) ก็ต้องใช้วิธีการอื่นแทน เช่นการเปิดเส้นทางการไหลให้ด้านขาเข้าเชื่อมต่อกับด้านขาออก หรือในกรณีของ reciprocating compressor ก็อาจเปิดวาล์วด้านขาเข้าค้างเอาไว้

เรื่องที่นำมาเล่าในวันนี้นำมาจากบทความเรื่อง "Explosion in Analyser House" เขียนโดย Rajib Talukder เผยแพร่ไว้เมื่อเดือนมิถุนายน ค.ศ. ๒๐๒๓ โดยเป็นเรื่องของเหตุการณ์เมื่อปีค.ศ. ๑๙๙๙ ที่ผู้เขียนนั้นได้มีโอกาสได้เห็นการระเบิดใน Analyser House แห่งหนึ่งโดยมีสาเหตุมาจากการต่อท่อผิด แต่ที่น่าตกใจคือในปีค.ศ. ๒๐๑๙ หรืออีก ๑๙ ปีให้หลังผู้เขียนก็ได้มาพบรูปแบบการเดินท่อแบบเดียวกับที่ก่อเรื่องไว้ก่อนหน้าในโรงกลั่นน้ำมันอีกแห่งหนึ่งอีก

เหตุการณ์ในปีค.ศ. ๑๙๙๙ (พ.ศ. ๒๕๔๒) เกิดขึ้นหลังจากการซ่อมบำรุง recycle gas compressor ของหน่วย diesel hydrotreater คอมเพรสเซอร์ตัวนี้ใช้ในการอัดแก๊สที่ประกอบด้วยไฮโดรเจน 95 mol% และไฮโดรเจนซัลไฟด์ (H2S) 0.05 mol% คอมเพรสเซอร์เป็นชนิด reciprocating ที่มี loading/unloading valve จำนวน 8 ตัวที่ควบคุมการเปิด-ปิดด้วยการใช้ Instrument Air (IA) และยังมี flare tubing connection (จุดต่อท่อระบายออกสู่ระบบเผาแก๊สทิ้ง) เพื่อรวบรวมแก๊สที่อาจรั่วออกมาทาง valve gland ไปกำจัดทิ้งอย่างปลอดภัย

ประเด็นที่ก่อให้เกิดอุบัติเหตุคือจุดต่อท่อ Instrument Air กับ flare tubing connection ใช้ข้อต่อแบบเดียวกันที่สามารถต่อสลับกันได้

คืนก่อนวันเกิดเหตุ การซ่อมบำรุงคอมเพรสเซอร์เสร็จสิ้นและเริ่มเดินเครื่อง ต่อมาในเช้าวันรุ่งขึ้นมีการตรวจพบกลิ่นแก๊สไฮโดรเจนซัลไฟล์ในบริเวณ Analyser House ที่ตั้งอยู่ใกล้กับตัวคอมเพรสเซอร์ เพื่อที่จะหาแหล่งที่มาของแก๊สช่างเทคนิครายหนึ่งจึงเข้าไปใน Analyser House หลังจากนั้นไม่นานก็เกิดการระเบิดใน Analyser House

Analyser House หลังนี้ใช้ Instument Air ในการสร้างความดันบวก (positive pressure) ในตัวอาคาร จากการสอบสวนพบว่ามีการต่อท่อผิดที่ loading/unloading valve ของตัวคอมเพรสเซอร์ โดยต่อท่อ Instrument Air เข้ากับ flare tubing connection ทำให้ไฮโดรเจนและไฮโดรเจนซัลไฟล์เข้าไปปะปนกับ Instrument Air ที่ใช้ในการสร้างความดันบวกภายใน Analyser House

ในเหตุการณ์นี้แก๊สผสม H2 + H2S ซึ่งต่างเป็นแก๊สที่ติดไฟได้ทั้งคู่รั่วไหลเข้าไปในระบบ Instrument Air ซึ่งแสดงว่าความดันของแก๊สในคอมเพรสเซอร์นั้นสูงกว่าของระบบ Instrument Air ที่น่าสนใจคือถ้าเกิดกลับกันคือ Instrument Air รั่วไหลเข้าไปในระบบ H2 + H2S ที่ไหลเวียนกลับไปยัง hydrotreater ใหม่ ผลที่เกิดขึ้นจะเป็นอย่างไร

วันพุธที่ 5 ตุลาคม พ.ศ. 2565

การระเบิดในท่ออากาศความดันสูง MO Memoir : Wednesday 5 October 2565

เรื่องที่นำมาเล่าในวันนี้นำมาจากบทความเรื่อง "Rupture of high-pressure air piping on the discharge of an air compressor" ซึ่งเป็นเหตุการณ์ที่เกิดขึ้นที่เมือง Nagoya, Aichi ประเทศญี่ปุ่น เมื่อวันที่ ๓ ตุลาคม ค.ศ. ๑๙๘๓ (พ.ศ. ๒๕๒๖) หรือเมื่อ ๓๙ ปีที่แล้ว (ดูบทความต้นฉบับได้ที่ http://www.shippai.org/fkd/en/cfen/CC1000196.html)

รูปที่ ๑ ระบบที่เกิดอุบัติเหตุ

การอัดแก๊สให้มีความดันสูงขึ้นจะทำให้แก๊สนั้นมีอุณหภูมิสูงขึ้น (ตรงนี้จะแตกต่างจากการอัดของเหลวให้มีความดันสูงขึ้น ซึ่งการเพิ่มอุณหภูมินั้นไม่เด่นชัดเหมือนกับแก๊ส) และเมื่อแก๊สมีอุณหภูมิสูง แก๊สก็มีแนวโน้มที่จะขยายปริมาตร ซึ่งเป็นการกระทำที่ต้านต่อการอัดแก๊ส (คือการลดปริมาตรต่อหน่วยของแก๊ส) ทำให้ประสิทธิภาพในการอัดแก๊สลดต่ำลง เพื่อแก้ปัญหานี้ในกรณีที่ไม่สามารถเพิ่มความดันแก๊สให้สูงถึงค่าที่ต้องการได้ด้วยการอัดเพียงขั้นเดียว ก็จะใช้การอัดเพิ่มความดันเป็นขั้น ๆ โดยมีการลดอุณหภูมิแก๊สที่ผ่านขั้นตอนการอัดก่อนหน้าให้เย็นลง ก่อนที่จะทำการอัดแก๊สในขั้นตอนถัดไป

และในกรณีที่แก๊สมีไอระเหยของเหลวปนอยู่ เมื่อแก๊สที่ผ่านการอัดเพิ่มความดันแล้วเย็นตัวลง ก็มีโอกาสที่จะมีของเหลวควบแน่นออกมา ในกรณีของอากาศสิ่งที่มีอยู่แล้วในอากาศก็คือไอน้ำ ดังนั้นจึงเป็นเรื่องปรกติที่จะพบว่าเมื่อนำอากาศมาอัดเพิ่มความดัน ก็จะมีน้ำควบแน่นออกมา ซึ่งต้องกำจัดน้ำนี้ทิ้งก่อนเอาอากาศไปใช้งาน

รูปที่ ๒ ความเสียหายที่เกิด

ส่วนที่ว่าในการอัดแก๊สแต่ละขั้นตอนนั้นควรอัดแก๊สให้มีความดันเท่าใดก็ขึ้นอยู่กับว่าแก๊สที่อัดนั้นเป็นแก๊สชนิดใด ในกรณีที่เป็นแก๊สเฉื่อยที่ไม่เกิดปฏิกิริยาใด ๆ ประสิทธิภาพของการอัดแก๊สจะเป็นตัวกำหนด แต่ถ้าเป็นแก๊สที่เกิดปฏิกิริยาได้ถ้าอุณหภูมิสูงเกินไป อุณหภูมิที่แก๊สนั้นจะเกิดปฏิกิริยาได้จะเป็นตัวกำหนด เช่นกรณีของเอทิลีน (Ethylene H2C=CH2) อุณหภูมิด้านขาออกไม่ควรที่จะถึงระดับ 93ºC

องค์ประกอบหลักของอากาศคือไนโตรเจนและออกซิเจน ซึ่งจะว่าไปแล้วแก๊สสองตัวนี้ไม่ทำปฏิกิริยากันได้ง่าย ๆ มันพอจะทำปฏิกิริยากันได้บ้างกลายเป็นแก๊สไนโตรเจนออกไซด์ต่าง ๆ ที่อุณหภูมิสูง (เช่นในการเผาไหม้เชื้อเพลิง) ดังนั้นถ้าพิจารณากันตามนี้ ปัจจัยที่ควรเป็นตัวกำหนดว่าอุณหภูมิด้านขาออกของอากาศที่ผ่านการอัดเพิ่มความดันนั้นควรสูงไม่เกินเท่าใดจึงควรเป็นประสิทธิภาพการทำงานของเครื่องอัดอากาศ แต่ในความเป็นจริงนั้นมันมีปัจจัยอื่นเข้ามาร่วมวงอีก นั่นคือปฏิกิริยาระหว่างออกซิเจนกับน้ำมันหล่อลื่นที่ใช้หล่อลื่นการทำงานของเครื่องอัดอากาศ ที่มันสามารถหลุดติดมากับอากาศได้

เหตุการณ์ที่เกิดนี้เกิดขึ้นเมื่อเวลาประมาณ ๙.๒๐ น ที่ข้องอของท่อระบายความร้อนอากาศที่ผ่านการอัดในขั้นตอนที่สาม ณ ตำแหน่งนี้อากาศจะมีความดันประมาณ 10 MPa (หรือประมาณ 100 เท่าความดันบรรยากาศ) และอุณหภูมิประมาณ 154ºC สาเหตุคาดว่าเกิดจากการมีคราบเขม่าหรือฟิล์มน้ำมันอยู่ที่บริเวณดังกล่าวผสมรวมกันสนิมเหล็กและเกิดการระเบิดขึ้น ท่อบริเวณดังกล่าวได้รับการตรวจสอบและทำความสะอาดภายในครั้งสุดท้ายในปีค.ศ. ๑๙๗๔ หรือ ๙ ปีก่อนหน้านั้น

การทดลองภายหลังพบว่าถ้าเป็นน้ำมันหล่อลื่นที่สะอาด ปฏิกิริยาระหว่างอากาศความดันสูงและน้ำมันจะเริ่มเกิดที่อุณหภูมิ 227ºC แต่ถ้ามีการผสมอะลูมินา (Al2O3) หรือสนิมเหล็ก พบว่าที่ความดัน 10 MPa อุณหภูมิ 161ºC น้ำมันจะเริ่มลุกติดไฟได้หลังผ่านไป 11 นาที (ในอุบัติเหตุที่เกิดเป็นน้ำมันที่ผ่านการใช้งานมานานเป็นระยะเวลาหนึ่งแล้ว) ในวันที่เกิดเหตุนั้นอุณหภูมิที่วัดได้คือ 154ºC และอุณหภูมิสูงสุดที่เคยวัดได้คือ 161ºC

การจุดระเบิดแบบนี้เป็นการจุดระเบิดเนื่องจากอุณหภูมิสูงถึง autoignition temperature แบบเดียวกันกับในเครื่องยนต์ดีเซลที่ใช้การอัดอากาศให้มีปริมาตรเล็กลง ซึ่งทำให้อากาศที่ถูกอัดดังกล่าวมีอุณหภูมิสูง ซึ่งเมื่อฉีดน้ำมันดีเซลเข้าไป น้ำมันนั้นก็จะลุกติดไฟทันทีโดยไม่ต้องมีการใช้หัวเทียนแบบเครื่องยนต์เบนซิน

ในหนังสือ What Went Wrong? ที่เขียนโดย Prof. T.A. Kletz ก็กล่าวไว้ว่าอุณหภูมิอากาศด้านขาออกของเครื่องอัดอากาศไม่ควรจะสูงเกิน 140ºC

วันอาทิตย์ที่ 20 ธันวาคม พ.ศ. 2563

UVCE case 7 Shell Olefin Plant 2540 (1997) ตอนที่ ๑ MO Memoir : Sunday 20 December 2563

ตอนสายของวันอาทิตย์ที่ ๒๒ มิถุนายน พ.ศ. ๒๕๔๐ (ค.ศ. ๑๙๙๗) เวลาประมาณ ๑๐ โมงเศษ ได้เกิดการรั่วไหลของแก๊สก่อนที่จะเกิดการระเบิดตามมาในอีกไม่กี่นาที ณ โรงงานผลิตโอเลฟินส์ของบริษัท Shell ในมลรัฐเท็กซัส ประเทศสหรัฐอเมริกา อุบัติเหตุครั้งนี้แม้ว่าจะไม่มีผู้เสียชีวิตแต่ก็มีหลายประเด็นที่น่าสนใจ เช่นสาเหตุที่ทำให้เกิดการรั่วไหลนั้นต้นตอมาจากความเสียหายของชิ้นส่วนเล็ก ๆ ชิ้นส่วนหนึ่ง และความเสียหายดังกล่าวก็ไม่ได้เกิดขึ้นครั้งแรก แต่เคยได้เกิดขึ้นก่อนหน้านี้หลายครั้งแม้ว่าจะเกิดที่โรงงานอื่นแต่ก็เป็นของเครือบริษัทเดียวกัน ซึ่งเป็นการแสดงให้เห็นว่าข้อมูลอุบัติเหตุที่เกิดก่อนหน้านั้นไม่ได้มีการเผยแพร่ให้รับทราบกันอย่างทั่วถึง และมีการประเมินผลกระทบที่ตามมาต่ำเกินไป อาจเป็นเพราะว่าเหตุที่เกิดก่อนหน้านี้มีการตรวจพบก่อนที่จะเกิดความเสียหายรุนแรงตามมา

เรื่องที่นำมาเล่านี้นำมาจาก EPA/OSHA Joint Chemical Accident Investigation Report : Shell Chemical Company, Deer Park, Texas เผยแพร่เมื่อเดือนมิถุนายน พ.ศ. ๒๕๔๑ (ค.ศ. ๑๙๙๘) ที่เป็นรายงานการสอบสวนที่เกิดขึ้นที่ Olefin Plant Number III (OP-III) แต่ก่อนอื่นจะขอปูพื้นฐานกระบวนการผลิตเอทิลีน โดยจะเน้นเฉพาะส่วนเพิ่มความดันให้กับแก๊ส ซึ่งเป็นจุดต้นตอของการรั่วไหลในเหตุการณ์นี้ แต่สำหรับผู้ที่สนใจสามารถอ่านเพิ่มเติมได้ในบทความเรื่อง

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๙ Charge gas compression ภาค ๑" (Memoir ปีที่ ๘ ฉบับที่ ๑๑๗๗ วันอาทิตย์ที่ ๒๙ พฤษภาคม ๒๕๕๙)

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๑๐ Charge gas compression ภาค ๒" (Memoir ปีที่ ๘ ฉบับที่ ๑๑๗๘ วันพฤหัสบดีที่ ๒ มิถุนายน ๒๕๕๙) และ

"ทำความรู้จักกระบวนการผลิตเอทิลีน ตอนที่ ๑๑ Charge gas compression ภาค ๓" (Memoir ปีที่ ๘ ฉบับที่ ๑๑๘๑ วันพุธที่ ๘ มิถุนายน ๒๕๕๙)

ในการผลิตเอทิลีน (Ethylene C2H4 หรือ Ethene) นั้นจะนำไฮโดรคาร์บอนโมเลกุลใหญ่มาให้ความร้อนใน Pyrolysis furnace จนไฮโดรคาร์บอนโมเลกุลใหญ่นั้นแตกออกเป็นโมเลกุลเล็กลงจนกลายเป็นเอทิลีนร่วมกับโอเลฟินส์ตัวอื่น เช่นโพรพิลีน (Propylene C3H6 หรือ Propene) เพื่อให้ปฏิกิริยาดำเนินไปข้างหน้าได้ดี ความดันการเกิดปฏิกิริยาจึงไม่สูงมาก (มากกว่าความดันบรรยากาศไม่มาก ทั้งนี้เพราะในปฏิกิริยานี้จำนวนโมลของผลิตภัณฑ์เพิ่มสูงกว่าสารตั้งต้น) การผลิตในส่วนนี้เป็นส่วนที่ใช้อุณหภูมิสูง (Hot side) ก็เรียกว่าตั้งแต่ระดับประมาณอุณหภูมิห้องไปจนถึงเกือบ 1000ºC (ขึ้นกับชนิดไฮโดรคาร์บอนที่ใช้เป็นสารตั้งต้น)

แก๊สผลิตภัณฑ์ร้อนที่ออกมาจาก Pyrolysis furnace นั้นจะถูกลดอุณหภูมิให้ต่ำลง (โดยใช้การดึงเอาความร้อนกลับไปใช้ประโยชน์) ก่อนจะเข้าสู่ขั้นตอนการอัดเพิ่มความดัน การอัดเพิ่มความดันนี้ก็เพื่อทำให้สามารถทำให้แก๊สเป็นของเหลวได้ที่อุณหภูมิที่ไม่ต่ำเกินไป และให้มีความดันมากพอที่แก๊สจะไหลผ่านระบบกลั่นแยกต่าง ๆ ไปจนถึงปลายทางสายการผลิต การผลิตส่วนนี้เป็นส่วนที่ใช้อุณหภูมิต่ำ ก็เรียกว่าประมาณอุณหภูมิห้องไปจนต่ำสุดก็ประมาณระดับ -100ºC

เพื่อที่จะรักษาประสิทธิภาพการอัดแก๊สและป้องกันไม่ให้เอทิลีนเกิดปฏิกิริยาถ้าอุณหภูมิแก๊สสูงเกินไป การอัดแก๊สให้ได้ระดับความดันที่ต้องการจึงต้องค่อย ๆ เพิ่มความดันทีละขั้น อย่างเช่นในโรงงานที่เกิดเหตุนี้ใช้การอัด 5 ขั้นตอนด้วยกัน โดยในระหว่างแต่ละขั้นตอนการอัดนั้นจะมีการแยกเอาส่วนที่เป็นของเหลวที่ควบแน่นออกมาเมื่อลดอุณหภูมิแก๊สความดันสูงที่ออกมาจากขั้นตอนการอัดแต่ละขั้น รูปที่ ๑ เป็นแผนผังของโรงงานที่เกิดเหตุ ส่วนรูปที่ ๒ เป็นแผนผังของหน่วยเพิ่มความดัน

รูปที่ ๑ แผนผังหน่วยการผลิตที่เกิดเหตุ ส่วนด้านทิศใต้เป็นส่วนที่เรียกว่า "Hot side" คือเป็นด้านที่รับวัตถุดิบ (ไฮโดรคาร์บอน) เข้ามา ให้ความร้อนใน Pyrolysis furnace เพื่อให้โมเลกุลไฮโดรคาร์บอนโมเลกุลใหญ่แตกตัวเป็นเอทิลีน หน่วยนี้จะทำงานที่ความดันต่ำ (สูงกว่าบรรยากาศไม่มาก) จากนั้นแก๊สที่ออกจาก Pyrolysis furnace จะเข้าสู่หน่วยเพิ่มความดัน (Process gas compressor) ที่อยู่ทางด้านทิศเหนือ (เรียกว่า "Cold side") เพื่อเพิ่มความดันแก๊สให้สูงขึ้นก่อนส่งต่อเข้าระบบทำความเย็น และการกลั่นแยกต่อไป

รูปที่ ๒ แผนผังกระบวนการอัดแก๊สที่มีการอัดเพิ่มความดัน 5 ขั้นตอนด้วยกัน

กระบวนการอัดแก๊สของโรงงานนี้เป็นกระบวนการอัด 5 ขั้นตอน (รูปที่ ๒) ใช้กังหันไอน้ำ (Steam turbine) ขับเคลื่อนคอมเพรสเซอร์ 5 ตัวที่ต่อร่วมแกนกัน การผลิตเอทิลีนนั้นเป็นกระบวนการที่ใช้พลังงานความร้อนสูง และเมื่อได้ผลิตภัณฑ์แล้วก็ต้องลดอุณหภูมิให้ต่ำลงก่อนทำการกลั่นแยก การลดอุณหภูมินี้ก็มีทั้งการนำความร้อนนั้นไปผลิตไอน้ำความดันสูงและถ่ายเทให้กับสายอื่นที่ต้องการอุ่นให้ร้อนขึ้น ส่วนหนึ่งของไอน้ำความดันสูงที่ได้มาก็นำมาใช้ในการขับเคลื่อนเครื่องอัดแก๊ส (จะได้ลดการพึ่งพาพลังงานไฟฟ้าไปด้วยในตัว)

แก๊สที่ผ่านการอัดแต่ละขั้นตอนจะมีอุณหภูมิสูงขึ้น ซึ่งต้องลดให้ต่ำลงก่อนที่จะเข้าสู่ขั้นตอนถัดไป (ในรูปที่ ๒ ไม่ได้เขียนส่วนที่เป็นเครื่องแลกเปลี่ยนความร้อนเอาไว้) แก๊สร้อนที่มีความดันสูงขึ้นเมื่อทำให้เย็นลงก็จะมีไฮโดรคาร์บอนหนักบางส่วนควบแน่นออกมา ซึ่งต้องแยกออกจากแก๊สก่อนที่จะเข้าสู่ขั้นตอนอัดถัดไปโดยใช้ Liquid knock-out drum

อุปกรณ์สำคัญอีกตัวหนึ่งที่ต้องติดตั้งไว้ทางท่อด้านขาออกของปั๊มหรือคอมเพรสเซอร์ก็คือวาล์วกันการไหลย้อนกลับ (check valve หรือ non-return valve) ทั้งนี้เพราะด้านขาออกมีความดันสูงกว่าด้านขาเข้า ถ้าหากปั๊มหรือคอมเพรสเซอร์หยุดทำงาน (ไม่ว่าจะเป็นด้วยการกดปุ่มหยุดหรือไฟฟ้าดับก็ตาม) ของไหลความดันสูงทางด้านขาออกก็จะไหลย้อนกลับเข้าสู่ตัวปั๊มหรือคอมเพรสเซอร์ได้ และสามารถทำให้อุปกรณ์หมุนกลับทิศทาง ซึ่งถ้าหมุนด้วยความเร็วรอบสูงเกินไปก็จะเกิดความเสียหายต่อตัวอุปกรณ์ได้ หรืออาจทำให้ระบบท่อและ/หรืออุปกรณ์ด้านขาเข้าที่ไม่ได้ออกแบบไว้รองรับความดันที่สูงเกินนั้นเกิดความเสียหายได้

รูปที่ ๓ เหตุการณ์ในขณะเริ่มต้นเดินเครื่องเครื่องคอมเพรสเซอร์ใหม่หลังไฟฟ้าดับ

ทีนี้เราลองกลับมาดูเหตุการณ์ที่เกิดขึ้นที่โรงโอเลฟินส์ดังกล่าว เริ่มจากการที่เกิดเหตุไฟฟ้าดับเมื่อเวลาประมาณ ๐๒.๑๕ น อันเป็นผลจากหม้อแปลงไฟฟ้าระเบิดจากพายุฝนฟ้าคะนอง ในช่วงเวลาดังกล่าวระบบไฟฟ้าสำรองได้ทำงานเพื่อจ่ายไฟให้กับระบบที่สำคัญบางส่วน ในช่วงเวลานี้ยังมี pyrolysis furnace บางตัวทำงานอยู่ ซึ่งจำเป็นต้องให้มีแก๊สไหลผ่านเพื่อรับความร้อน แต่เนื่องจากคอมเพรสเซอร์ที่จะดูดเอาแก๊สนั้นส่งต่อไปยังหน่วยกลั่นแยกไม่ทำงาน จึงต้องระบายแก๊สออกไปเผาทิ้งที่ระบบ flare ซึ่งถือว่าเป็นการสูญเสียและก่อให้เกิดควันดำมาก (เพราะหม้อไอน้ำที่ผลิตไอน้ำเพื่อไปเจือจางการเผาไหม้ที่ปากปล่อง flare หยุดทำงาน) ดังนั้นโอเปอร์เรเตอร์จึงได้ตัดสินใจที่จะเริ่มเดินเครื่องคอมเพรสเซอร์ใหม่อีกครั้งเพื่อลดการสูญเสียและปัญหาการเกิดควันดำ เนื่องจากคอมเพรสเซอร์ขับเคลื่อนด้วยการใช้กังหันไอน้ำ ดังนั้นการเริ่มเดินเครื่องจึงเริ่มด้วย "Slow roll" หรือค่อย ๆ หมุนอย่างช้า ๆ ก่อน (รูปที่ ๓)

มอเตอร์ไฟฟ้ากระแสสลับพวก Induction motor ที่ใช้งานกันอย่างแพร่หลายที่สุดจะหมุนด้วยความเร็วรอบคงที่ที่ขึ้นอยู่กับความถี่กระแสไฟฟ้า ในช่วงที่มอเตอร์เริ่มหมุนนั้นกระแสจะไหลเข้าขดลวดสูงมาก แต่เมื่อหมุนจนได้ความเร็วรอบแล้วกระแสจะลดต่ำลงมาก ดังนั้นอุปกรณ์ที่ใช้มอเตอร์พวกนี้ขับเคลื่อน ตอนเริ่มเดินเครื่องจึงต้องทำให้มอเตอร์หมุนจนถึงความเร็วรอบให้เร็วที่สุด และให้มี load ตอนเริ่มเดินเครื่องต่ำสุด เพื่อไม่ให้กระแสตอนเริ่มเดินเครื่องนั้นสูงมากเกินไป

ด้วยเหตุนี้ในกรณีของปั๊มหอยโข่ง เวลาเริ่มเดินเครื่องจึงมักจะปิดวาล์วด้านขาออกของปั๊มหรือเปิด minimum flow line เอาไว้ เพื่อให้มอเตอร์มี load ต่ำสุดซึ่งจะเกิดขึ้นเมื่ออัตราการของของเหลวเป็นศูนย์ ในกรณีของคอมเพรสเซอร์ที่ถ้าเป็นการอัดอากาศธรรมดา ก็จะใช้การเปิดท่อทางออกสู่บรรยากาศเพื่อให้มอเตอร์มี load ต่ำสุดเช่นกัน เพราะเป็นการดูดอากาศที่ความดันบรรยากาศและปล่อยออกไปที่ความดันบรรยากาศเช่นเดิม

แต่ถ้าเป็นการขับเคลื่อนด้วยกังหันไอน้ำจะแตกต่างออกไป เพราะไอน้ำจะทำให้ตัวกังหันไอน้ำร้อนขึ้น และเมื่อโลหะร้อนก็จะมีการขยายตัว ดังนั้นเพื่อป้องกันความเสียหายที่เกิดขึ้นจากชิ้นส่วนโลหะแต่ละชิ้นส่วนขยายตัวแตกต่างกัน จึงจำเป็นที่ต้องให้อุปกรณ์ค่อย ๆ ร้อนขึ้นอย่างช้า ๆ (ทำนองเดียวกับการเปิดไอน้ำเข้าระบบท่อที่เย็น ที่ต้องค่อย ๆ เปิดเพื่ออุ่นท่อให้ร้อนและลดการเกิด water hammer เนื่องจากไอน้ำควบแน่นในปริมาณมากในระบบท่อที่เย็น) ขั้นตอนนี้คือขั้นตอน "Slow roll" ที่เขียนไว้ในรูปที่ ๓ ซึ่งขั้นตอนทั้งหมดจะกินเวลาอย่างน้อย 2 ถึง 4 ชั่วโมง

พวก rotating machinery หรือเครื่องจักรกลที่มีชิ้นส่วนที่หมุนจะมีช่วงความเร็วเชิงมุมของการหมุนช่วงหนึ่งที่เรียกว่า "critical speed" (รูปที่ ๔) ชิ้นส่วนแต่ละชิ้นจะมีการสั่นด้วยความถี่ธรรมชาติที่ค่า ๆ หนึ่ง และเมื่อใดก็ตามที่ความเร็วเชิงมุมนี้สอดคล้องกับความถี่การสั่นตามธรรมชาติ ก็จะทำชิ้นส่วนนั้นเกิดการสั่นที่รุนแรงขึ้น ถ้าความเร็วรอบการหมุนอยู่นอกช่วงนี้ (ไม่ว่าจะเป็นช้ากว่าหรือเร็วกว่า) การสั่นก็จะลดลง ในกรณีของอุปกรณ์ที่สามารถเพิ่มความเร็วรอบการหมุนได้เร็ว ช่วงเวลาที่ชิ้นส่วนมีความเร็วรอบในช่วง critical speed ก็จะสั้น แต่ถ้าเป็นกรณีของอุปกรณ์ที่ต้องเพิ่มความเร็วรอบการหมุนอย่างช้า ๆ เช่นกรณีของกังหันแก๊สในที่นี้ ช่วงเวลาที่ความเร็วรอบการหมุนอยู่ในช่วง critical speed ก็จะนานมากขึ้น ด้วยเหตุนี้เพื่อป้องกันความเสียหายที่อาจเกิดขึ้นกับตัวอุปกรณ์ จึงได้มีการติดตั้งอุปกรณ์ตรวจวัดการสั่นสะเทือน (vibration sensor) ที่จะหยุดการทำงานของอุปกรณ์ถ้าตรวจพบการสั่นที่สูงมากเกินไป

และในระหว่างการเริ่มต้นเดินเครื่องคอมเพรสเซอร์นี้ vibration sensor ก็ได้ตรวจพบการสั่นสะเทือนที่มากเกินไป จึงได้ทำการหยุดการทำงานของคอมเพรสเซอร์ เหตุการณ์ดังกล่าวเกิดขึ้นหลายครั้ง แต่เนื่องจากโอเปอร์เรเตอร์เข้าใจว่าสาเหตุเกิดจากการเร่งความเร็วรอบผ่าน critical speed ที่ช้าเกินไป จึงได้ทำการ reset สัญญาณและเริ่มต้นเดินเครื่องใหม่

อนึ่งในรายงานการสอบสวนบันทึกไว้ว่า โอเปอร์เรเตอร์ที่ทำหน้าที่เดินเครื่องคอมเพรสเซอร์นั้นได้ข้ามขั้นตอนหนึ่งไปก็คือการระบายของเหลวที่ควบแน่นออกจากระบบ เพราะถ้ามีของเหลวเหล่านี้สะสมมากเกินไป มันจะสามารถหลุดรอดเข้าไปในตัวกังหันไอน้ำและคอมเพรสเซอร์ได้ ซึ่งจะนำไปสู่การสั่นอย่างรุนแรง ค่าการสั่นปรกติจะอยู่ที่ 0.2 mil แต่ตรวจวัดการสั่นได้ถึง 1.0 mil

หน่วย "mil" ในที่นี้คือ 1 ใน 1000 นิ้วนะ ไม่ใช่มิลลิเมตรที่เขียนย่อว่า mm

รูปที่ ๔ ช่วงความเร็ววิกฤตหรือ Critical speed ของ rotating machinery

เมื่อปั๊มหรือคอมเพรสเซอร์หยุดทำงานนั้น ของไหลทางด้านความดันสูงจะไหลย้อนกลับ การไหลย้อนกลับนี้จะทำให้วาล์วกันการไหลย้อนกลับปิดตัว ในกรณีของวาล์วกันการไหลย้อนกลับแบบ swing check valve นั้น ตัว valve disc จะปิดตัวเร็วแค่ไหนก็ขึ้นอยู่กับความดันด้านขาเข้าว่าลดลงเร็วแค่ไหน ถ้าของไหลเป็นแก๊ส ความเร็วในการปิดก็จะเร็วกว่ากรณีที่ของไหลเป็นของเหลว (แบบเดียวกับที่เราเห็นการเติมของเหลวเข้าไปใน pressure gauge เพื่อหน่วงการสั่นของอุปกรณ์เวลาที่ใช้กับระบบที่มีการเปลี่ยนแปลงความดันอย่างรวดเร็ว) และในส่วนของคอมเพรสเซอร์นั้นยังมีเรื่องการเกิด surging เข้ามาเกี่ยวข้องอีก (อ่านเพิ่มเติมได้ในเรื่อง "Centrifugal compressor กับการเกิด Surge และการป้องกัน" Memoir ปีที่ ๕ ฉบับที่ ๕๗๘ วันเสาร์ที่ ๑๖ กุมภาพันธ์ ๒๕๕๖)

รูปที่ ๕ ตัวอย่างรูปร่างหน้าตาของ Pneumatically-assisted swing check valve ที่มีกระบอกสูบลมช่วยในการดึงให้วาล์วอยู่ในตำแหน่งปิดสนิท/ป้องกันการกระแทกของ valve disc ในขณะปิด ตัวกระบอกสูบลมนี้จะมีวาล์วปรับแต่งการปิดว่าจะให้ปิดช้าหรือเร็วแค่ไหน ส่วน counterweight หรือน้ำหนักถ่วงนั้นถ้าติดตั้งอยู่ทางฝั่งเดียวกับ valve disc ก็จะช่วยให้วาล์วเคลื่อนตัวเพื่อปิดได้ง่ายขึ้น แต่ก็จะทำให้ต้องใช้แรงดันมากขึ้นเพื่อดันให้วาล์วเปิด ในทางกลับกันถ้าน้ำหนักถ่วงนั้นอยู่คนละฟากของ valve disc ก็จะช่วยให้วาล์วเปิดได้ง่ายขึ้น แต่ก็จะปิดได้ยากขึ้น (รูปจาก https://www.made-in-china.com)

รูปที่ ๕ เป็นตัวอย่างหนึ่งของ swing check valve ที่มีอุปกรณ์ประกอบคือ Counter weight หรือน้ำหนักถ่วง และ Pneumatic cylinder หรือกระบอกสูบลม ตัวน้ำหนักถ่วงนี้ไม่เพียงแต่จะใช้ช่วยในการเปิดหรือปิดวาล์ว (ขึ้นอยู่กับว่าติดตั้งน้ำหนักถ่วงไว้ทางด้านไหน) แต่ยังช่วงแสดงให้เห็นด้วยว่าในขณะนั้นวาล์วเปิดหรือปิดอยู่ ส่วนตัวกระบอกสูบลมนั้นก็ทำหน้าที่ทั้งช่วยเพิ่มแรงต้านทานการเปิด (ลดปัญหาการเปิดปิดอย่างรวดเร็ว) และยังช่วงหน่วงการปิด (ไม่ให้ปิดกระแทกแรง) เพลา (shaft) ที่ติดตั้งน้ำหนักถ่วงนี้อาจเป็นเพลาตัวเดียวกับที่ติดตั้ง valve disc หรืออาจเป็นคนละตัวกัน

ตัว valve disc อยู่ข้างในตัววาล์วในขณะที่ counter weight อยู่ข้างนอก ดังนั้นเพื่อให้ counter weight หมุนไปตามการเคลื่อนตัวของ valve disc จึงจำเป็นที่ต้องให้การเคลื่อนตัวของ valve disc นั้นทำให้เพลาที่ใช้เป็นแกนหมุน หมุนตามไปด้วย ดังนั้นจำเป็นต้องมีการตรึงตัว valve disc และแขนติดตั้ง counter weight เข้ากับตัวเพลา วิธีการหนึ่งที่ใช้กันที่เหมาะสำหรับการส่งกำลังและสามารถรับแรงได้ดีคือการใช้ระบบ key, key seat/key way (รูปที่ ๖) โดยตัว key นั้นทำหน้าที่ส่งผ่านแรงการหมุนจากชิ้นส่วนหนึ่งไปยังอีกชิ้นส่วนหนึ่ง

รูปที่ ๖ ระบบ key, keyseat และ keyway ที่ใช้ส่งผ่านการหมุนระหว่างชิ้นส่วนสองชิ้นที่สวมเข้าด้วยกัน (ภาพจาก https://www.lovejoy-inc.com)

นอกจากนี้ตรงจุดที่เพลาโผล่ทะลุตัววาล์วออกมา ก็ต้องมีการป้องกันไม่ให้ของไหลข้างในรั่วไหลออกมาข้างนอกได้ โดยที่ยังต้องให้เพลานั้นหมุนได้โดยมีแรงเสียดทานน้อยที่สุด เทคนิคหนึ่งที่ใช้กันตรงนี้ก็คือการใช้ stuffing box (สำหรับผู้ที่ยังไม่รู้จัก stuffinb box ของให้อ่านรายละเอียดเพิ่มเติมได้ใน Memoir ปีที่ ๙ ฉบับที่ ๑๓๑๐ วันพฤหัสบดีที่ ๑๒ มกราคม ๒๕๖๐ เรื่อง "Piping and Instrumentation Diagram (P&ID) ของอุปกรณ์ ตอน Auxiliary piping ของปั๊มหอยโข่ง")

สำหรับตอนที่ ๑ นี้ก็ถือว่าเป็นการแนะนำให้รู้จักกับตัวละครสำคัญที่เกี่ยวข้องในเหตุการณ์ก่อนก็แล้วกัน ส่วนที่ว่าแล้วมันเกิดอะไรขึ้นต่อก็ขอเอาไว้เล่าต่อในตอนที่ ๒

วันอาทิตย์ที่ 30 สิงหาคม พ.ศ. 2563

คอมเพรสเซอร์เขาไม่ค่อยชอบของเหลวกับแก๊สความหนาแน่นต่ำครับ MO Memoir : Sunday 30 August 2563

"ถ้าเราต้องการเปลี่ยนสารตัวหนึ่งจากของเหลวที่ความดันต่ำ ให้เป็นแก๊สความความดันสูง เราควร

(ก) ให้ความร้อนแก่ของเหลวจนกลายเป็นไอที่ความดันต่ำก่อน จากนั้นจึงค่อยเพิ่มความดันให้กับไอน้ำ หรือ

(ข) เพิ่มความดันให้กับของเหลวจนเป็นของเหลวที่ความดันสูงก่อน จากนั้นจึงค่อยให้ความร้อนจนของเหลวกลายเป็นไอที่ความดันสูง"

สัปดาห์ที่แล้วมีผู้ถามคำถามข้างต้นมาถึงผม ซึ่งผมก็ได้ตอบเขาไปแล้ว (อันที่จริงมันก็มีอยู่ในบทความเก่า ๆ ใน blog นี้ด้วย) มาวันนี้ก็เลยอยากจะขอเขียนอะไรเพิ่มเติมขึ้นอีกนิดหน่อย

รูปแบบการทำงานของอุปกรณ์เพิ่มความดันให้กับของเหลวหรือแก๊สอาจแบ่งได้เป็น ๒ ประเภทด้วยกันคือ positive displacement ที่เพิ่มความดันให้กับของเหลวหรือแก๊สโดยตรง และ dynamic compression ที่ใช้การเพิ่มพลังงานจลน์ให้กับโมเลกุลของเหลวหรือแก๊ส (คือเพิ่มความเร็วในการเคลื่อนที่) แล้วค่อยให้พลังงานจลน์นั้นเปลี่ยนเป็นความดัน (จะเรียกว่าเปลี่ยนจาก velocity head เป็น pressure head ก็ได้) วิธีการเพิ่มพลังงานจลน์ที่กระทำกันก็คือการใช้การหมุนเหวี่ยงด้วยใบพัด ซึ่งก็ได้แก่พวก centrifugal pump (ปั๊มหอยโข่ง) และ centrifugal compressor และอุปกรณ์ประเภทหลังนี้ก็เป็นพวกที่มีการใช้งานกันอย่างแพร่หลายมากที่สุด

การอัดแก๊สให้มีความดันสูงขึ้นนั้น สิ่งที่เกิดขึ้นก็คืออุณหภูมิแก๊สที่ผ่านการอัดนั้นจะเพิ่มขึ้น แต่เมื่อความดันสูงขึ้นแก๊สก็จะควบแน่นเป็นของเหลวได้ที่อุณหภูมิสูงขึ้น ดังนั้นการอัดแก๊สจะทำได้ดีก็ต่อเมื่อแก๊สนั้นจะต้องไม่เกิดการควบแน่นเมื่อความดันสูงขึ้น กล่าวคืออุณหภูมิของแก๊สก่อนอัดนั้นต้องสูงกว่าอุณหภูมิจุดควบแน่นของแก๊สนั้น และแก๊สที่ผ่านการอัดแล้วต้องไม่ควบแน่น ณ อุณหภูมิด้านขาออกของคอมเพรสเซอร์ (แต่ไปควบแน่นในเครื่องแลกเปลี่ยนความร้อนที่ลดอุณหภูมิของแก๊สที่ผ่านการอัดแล้วไม่เป็นไร)

รูปที่ ๑ กราฟต่าง ๆ ที่นำมาประกอบ Memoir ฉบับนี้ นำมาจากบทความนี้ (ลิงก์ข้างล่าง) https://www.airbestpractices.com/technology/air-compressors/how-inlet-conditions-impact-centrifugal-air-compressor-performance

ปั๊มหอยโข่งที่ใช้กับของเหลวนั้นไม่ชอบให้มีฟองแก๊สในของเหลว ในกรณีที่ฟองแก๊สนั้นเป็นแก๊สที่ไม่ควบแน่น (เช่นมีฟองอากาศปนเข้ามาในน้ำ) เพราะพลังงานที่จ่ายให้ของเหลวจะถูกใช้ในการอัดฟองแก๊ส และถ้าเป็นฟองแก๊สที่เกิดจากการเดือดของของเหลวในตัวปั๊ม (บริเวณทางเข้าปั๊มที่ดูดของเหลวเข้ามาจะมีความดันที่ลดต่ำลง) เมื่อความดันเพิ่มสูงขึ้น ฟองแก๊สนั้นก็จะเกิดการยุบตัวลงอย่างรวดเร็ว (ผลจากการควบแน่น) ทำให้เกิดปรากฏการณ์ที่เรียกว่า cavitation ที่สามารถทำความเสียหายต่อชิ้นส่วนโลหะภายในปั๊มได้

ในกรณีชอง centrifugal compressor นั้น หยดของเหลวที่ติดมากับแก๊สที่ไหลเข้า หรือที่เกิดขึ้นระหว่างที่แก๊สมีความดันสูงขึ้น ก็สามารถทำให้ตัวอุปกรณ์ประสบกับปัญหา erosion ได้เช่นกัน ดังนั้นในกรณีที่เกรงว่าจะมีของเหลวติดมากับแก๊สที่ไหลเข้าคอมเพรสเซอร์ ก็จะมีการติดตั้ง knock out drum เอาไว้ที่ทางด้านขาเข้าของคอมเพรสเซอร์ knock out drum นี้เป็นถังเปล่า ๆ ใบหนึ่งที่ดักหยดของเหลวด้วยการทำให้แก๊สมีความเร็วลดต่ำลง (เพราะพื้นที่หน้าตัดของถังมันใหญ่กว่าท่อ) และมีการเปลี่ยนทิศทางการไหลของแก๊ส (แก๊สจะเลี้ยวออกไปอีกทาง ในขณะที่หยดของเหลวที่มีมวลมากกว่าจะเลี้ยวตามยากกว่า และวิ่งไปปะทะแผ่นกั้นหรือผนังของถัง กลายเป็นหยดของเหลวที่ใหญ่ขึ้นและไหลสงสูงก้นถัง knoco out drum บางตัวอาจมีการติดตั้ง mist eliminator เอาไว้ที่ทางออกของแก๊ส เพื่อช่วยดักหยดของเหลวเอาไว้อีกชั้นหนึ่ง

พวก centrifugal compressor ที่ใช้การเพิ่มพลังงานจลน์ให้กับโมเลกุลแก๊สด้วยการเหวี่ยงออกไปนั้น ที่ความเร็วรอบการหมุนคงที่ ความเร็วที่โมเลกุลแก๊สถูกเหวี่ยงออกไปก็จะคงที่ ส่วนพลังงานจลน์จะได้เท่าใดนั้นก็ขึ้นอยู่กับมวลของแก๊สที่ไหลเข้ามาและถูกเหวี่ยงออกไป ถ้าแก๊สที่ไหลเข้ามานั้นมีความดันสูง อุณหภูมิต่ำ และน้ำหนักโมเลกุลสูง น้ำหนักของแก๊สต่อหน่วยปริมาตรก็จะสูง (กล่าวคือมีความหนาแน่นสูง) พลังงานจลน์ของการเหวี่ยงออกไปก็จะสูง โดยใบพัดต้องใช้พลังงานมากขึ้นเพื่อที่จะหมุนด้วยความเร็วรอบคงที่ แต่ถ้าแก๊สที่ไหลเข้ามานั้นมีความดันต่ำ อุณหภูมิสูง และน้ำหนักโมเลกุลต่ำ น้ำหนักของแก๊สต่อหน่วยปริมาตรก็จะต่ำ (กล่าวคือมีความหนาแน่นต่ำ) พลังงานจลน์ของการเหวี่ยงออกไปก็จะต่ำ ใบพัดก็ต้องการพลังงานในการเหวี่ยงลดลง

แต่ทั้งนี้พลังงานจลน์ของการเหวี่ยงออกไปนั้น เมื่อเปลี่ยนรูปไปเป็นความดันแล้ว ต้องสามารถเอาชนะความดันต้านทางของแก๊สด้านขาออกได้ แก๊สจึงจะไหลไปข้างหน้าได้ และเมื่อใดที่พลังงานจลน์ในการเหวี่ยงออกไปนั้นไม่สามารถสร้างความดันที่เอาชนะความดันต้านทางด้านขาออกได้ แก๊สด้านขาออกก็จะไหลย้อนกลับได้ มันก็เลยเป็นการสู้กันระหว่างแก๊สด้านขาออกที่มีความดันสูงที่ไหลสวนทางกับแก๊สที่ใบพัดคอมเพรสเซอร์พยายามเหวี่ยงออกมา ก็ทำให้เกิดปรากฏการณ์ที่เรียกว่า surging ได้

รูปที่ ๒-๔ แสดงผลของอุณหภูมิและความดันของแก๊สที่ไหลเข้าคอมเพรสเซอร์ และความชื้นสัมพันธ์ในอากาศที่มีต่อความดันด้านขาออกที่ได้ แต่ทุกกราฟมีทุกสิ่งที่เหมือนกันคือ เมื่อใดก็ตามที่ความหนาแน่นแก๊สที่ไหลเข้าคอมเพรสเซอร์นั้นลดต่ำลง ความดันด้านขาออกก็จะลดลง

รูปที่ ๒ ที่อัตราการไหลโดยปริมาตรคงเดิม (ใบพัดหมุนด้วยความเร็วรอบคงที่) เมื่ออุณหภูมิแก๊สไหลเข้านั้นเพิ่มสูงขึ้น ความหนาแน่นแก๊สก็จะลดลง พลังงานจลน์ของแก๊สที่ถูกเหวี่ยงออกไปก็จะลดลง ความดันด้านขาออกที่ได้ก็จะลดลงไปด้วย

 

รูปที่ ๓ เมื่อความดันแก๊สขาเข้าลดต่ำลง (ที่อุณหภูมิคงที่) ความหนาแน่นแก๊สก็จะลดลง พลังงานจลน์ของแก๊สที่ถูกเหวี่ยงออกไปก็จะลดลง ความดันด้านขาออกที่ได้ก็จะลดลงไปด้วย


รูปที่ ๔ ในกรณีของการอัดอากาศนั้น เนื่องจากในอากาศจะมีความชื้นอยู่ และน้ำหนักโมเลกุลของน้ำนั้นต่ำกว่าของอากาศ ดังนั้นถ้าอากาศมีความชื้นมากขึ้น (คือมีสัดส่วนไอน้ำที่ผสมอยู่นั้นสูงขึ้น) ความหนาแน่นอากาศก็จะลดต่ำลง พลังงานจลน์ของอากาศที่ถูกเหวี่ยงออกไปก็จะลดลง ความดันด้านขาออกที่ได้ก็จะลดลงไปด้วย

มีเรื่องหนึ่งที่มีคนเคยถามมาเป็นเรื่องเกี่ยวกับการเพิ่มประสิทธิภาพของคอมเพรสเซอร์อัดอากาศ กล่าวคือในวันที่อากาศร้อนจัดนั้น ความหนาแน่นอากาศลดต่ำลง ประสิทธิภาพของคอมเพรสเซอร์ก็เลยตก การลดอุณหภูมิอากาศขาเข้าด้วยการติดตั้งเครื่องแลกเปลี่ยนความร้อนนั้น (ที่อาจใช้เพียงแค่เฉพาะวันที่มีอากาศร้อน) เป็นการลงทุนสูงแน่ ๆ แต่ถ้าจะใช้วิธีการฉีดพ่นละอองน้ำให้กับอากาศก่อนเข้าคอมเพรสเซอร์ (ซึ่งเป็นการลงทุนที่ต่ำกว่า) เพื่อให้การระเหยของหยดน้ำทำให้อุณหภูมิอากาศลดต่ำลง จะเป็นการช่วยไหม ซึ่งก็ได้ตอบเขาไปว่าก็ต้องระวังการเกิด erosion อันเป็นผลจากหยดน้ำที่ฉีดเข้าไปมากเกินไปและระเหยไม่หมด ส่วนความหนาแน่นของอากาศนั้นจะลดลงหรือเพิ่มขึ้นก็ขึ้นอยู่กับว่าปริมาณน้ำที่ฉีดเข้าไปที่ไปทำให้ความชื้นสัมพัทธ์สูงขึ้นและน้ำหนักโมเลกุลของอากาศลดต่ำลง อันส่งผลให้ความหนาแน่นอกาศลดลง และอุณหภูมิของอากาศที่ลดต่ำลงที่ทำให้ความหนาแน่นอากาศเพิ่มสูงขึ้น ปัจจัยไหนจะเด่นกว่ากัน ซึ่งได้ยินมาว่ามีการทดลองเอากระบอกฉีดน้ำไปฉีดละอองน้ำให้กับอากาศก่อนเข้าคอมเพรสเซอร์ แล้วก็ได้ผลดี

ด้วยเหตุนี้ ถ้าต้องการเปลี่ยนของเหลวความดันต่ำให้กลายเป็นแก๊สที่ความดันสูง ก็จะทำการเพิ่มความดันให้กับของเหลวนั้นก่อน แล้วจึงค่อยให้ความร้อนเพื่อเปลี่ยนให้ของเหลวนั้นกลายเป็นไอที่ความดันสูง ซึ่งเป็นวิธีการที่ใช้ในการผลิตไอน้ำความดันสูงที่ทำกันอยู่ทั่วไป ซึ่งเรื่องนี้เคยเล่าไว้ใน Memoir ฉบับวันพฤหัสบดีที่ ๑ ตุลาคม ๒๕๕๘ เรื่อง "ต้องควบแน่นก่อนแล้วค่อยต้มใหม่"

แต่ถ้ามีความจำเป็นที่ต้องอัดแก๊สที่อาจมีความหนาแน่นเปลี่ยนไปมาได้ โดยความหนาแน่นนั้นอาจลดต่ำลงได้มาก อันเป็นผลจากมีแก๊สโมเลกุลต่ำผสมเข้ามาในปริมาณมากขึ้น เราก็พอมีวิธีการที่จะทำให้คอมเพรสเซอร์ทำงานได้โดยไม่เกิด surging ได้ เช่นในการเพิ่มความดันให้กับแก๊สไฮโดรคาร์บอน C1-C2 ที่อาจมีไฮโดรเจนผสมเข้ามามากในบางช่วงเวลานั้น แทนที่เราจะทำการอัดแก๊สไฮโดรคาร์บอน C1-C2 ให้มีความดันสูงโดยตรง เราก็อาจทำการผสมไฮโดรคาร์บอน C3-C4 (ก็คือพวกแก๊สหุงต้ม) เข้ากับแก๊สก่อนเข้าคอมเพรสเซอร์ แล้วค่อยไปควบแน่นเอาไฮโดรคาร์บอน C3-C4 ออกจากแก๊สความดันสูง แล้วก็ป้อนไฮโดรคาร์บอน C3-C4 ที่ควบแน่นเป็นของเหลวนี้กลับไปทางด้านขาเข้าคอมเพรสเซอร์ใหม่ ซึ่งเมื่อไฮโดรคาร์บอน C3-C4 ที่ควบแน่นนั้นมีความดันลดลง มันก็จะระเหยกลายเป็นไอผสมเข้ากับแก๊สมวลโมเลกุลต่ำที่ไหลเข้าคอมเพรสเซอร์ได้เอง (รูปที่ ๕) จุดหนึ่งที่อาจประสบกับปัญหานี้ได้ก็คือระบบ flare gas recovery ที่องค์ประกอบของแก๊สนั้นขึ้นอยู่กับว่าในขณะนั้นมีหน่วยผลิตไหนระบายแก๊สทิ้งออกมา

รูปที่ ๕ เทคนิคหนึ่งที่ทำให้คอมเพรสเซอร์ทำการเพิ่มความดันให้กับแก๊สที่มีมวลโมเลกุลต่ำได้โดยไม่เกิด surging

วันพฤหัสบดีที่ 28 พฤศจิกายน พ.ศ. 2562

Fluidised bed reactor สำหรับการผลิต polyolefins MO Memoir : Thursday 28 November 2562


กระบวนการการสังเคราะห์พอลิเอทิลีนและพอลิโพรพิลีนที่มีการใช้ตัวเร่งปฏิกิริยานั้นมีรูปแบบที่คล้ายกัน เพราะใช้ตัวเร่งปฏิกิริยาตระกูลเดียวกัน แต่กระบวนการทั้งสองก็มีความแตกต่างอยู่บ้าง เช่นเมื่อคิดเทียบจากน้ำหนักพอลิเมอร์ที่ได้เท่ากัน การสังเคราะห์พอลิเอทิลีนนั้นจะมีการคายความร้อนมากกว่าเพราะต้องมีการต่อพันธะมากกว่า และด้วยการที่เราสามารถทำให้โพรพิลีนกลายเป็นของเหลวได้ที่อุณหภูมิห้องหรือสูงกว่าอุณหภูมิห้องไม่มาก จึงทำให้สามารถใช้โพรพิลีนเป็นตัวทำละลายสารตั้งต้นและตัวเร่งปฏิกิริยาในระหว่างการทำปฏิกิริยาได้ รายละเอียดเรื่องนี้เคยเล่าไว้เมื่อ ๑๐ ปีที่แล้วใน Memoir ปีที่ ๒ ฉบับที่ ๕๘ วันอาทิตย์ที่ ๒๐ กันยายน ๒๕๕๒ เรื่อง "Ethylene polymerisation"
      
การพอลิเมอร์ไรซ์ในเฟสของเหลวนั้นมีข้อดีตรงที่ของเหลวเป็นแหล่งรับความร้อนที่ดี และการถ่ายเทความร้อนของของเหลวผ่านผนังโลหะของเครื่องแลกเปลี่ยนความร้อนให้กับน้ำหล่อเย็นนั้นเกิดได้ดีกว่ากรณีของแก๊ส หรืออาจใช้การควบคุมอุณหภูมิด้วยการเลือกชนิดตัวทำละลายและความดันในการทำงานให้เหมาะสม กล่าวคือปรับตั้งความดันเพื่อให้อุณหภูมิจุดเดือดของของเหลวนั้นเท่ากับการอุณหภูมิการทำปฏิกิริยา จึงทำให้สามารถระบายความร้อนได้ในปริมาณมาก (เพราะความร้อนแฝงของการกลายเป็นไอมีค่าสูง ดังนั้นปริมาณความร้อนที่ระบายออกไปต่อหน่วยน้ำหนักของของเหลวที่เดือดจึงมีค่าสูง) แต่เทคนิคนี้ก็มีข้อเสียตรงที่ต้องมีตัวทำละลายหมุนเวียนอยู่ในระบบ ต้องมีระบบปรับสภาพตัวทำละลายเพื่อให้สามารถนำกลับมาใช้งานใหม่ได้ และมีการเกิดโอลิโกเมอร์ (oligomer - พอลิเมอร์สายสั้นเกินกว่าที่จะทำไปใช้งานขึ้นรูปผลิตภัณฑ์ได้) ที่เป็นการสูญเสีย
  
การทำปฏิกิริยาในเฟสแก๊สนั้นมีข้อดีตรงที่ไม่จำเป็นต้องมีการลงทุนในส่วนของตัวทำละลายและหน่วยปรับสภาพตัวทำละลายเพื่อนำกลับมาใช้งานใหม่ และไม่มีปัญหาเรื่องการเกิดโอลิโกเมอร์ แต่จะไปมีปัญหาเรื่องค่า conversion (สัดส่วนสารตั้งต้นที่เปลี่ยนไปเป็นผลิตภัณฑ์) ที่ต่ำ ค่า conversion ตรงนี้คิดระหว่างจุดเข้า-ออกจาก reactor (ไม่ได้คิดจากจุดเข้า-ออกของกระบวนการ) ทำให้ต้องมีการหมุนเวียนแก๊สที่ยังไม่ทำปฏิกิริยากลับมาใช้งานใหม่ เรียกว่าอัตราการไหลของแก๊สที่ไหลหมุนเวียนในระบบนั้นจะสูงกว่าอัตราการไหลของแก๊สที่ป้อนเข้ามาชดเชยส่วนที่เกิดเป็นพอลิเมอร์ไปอยู่มาก และยังต้องคอยระมัดระวังเรื่องการระบายความร้อน เพราะการระบายความร้อนของแก๊สร้อนผ่านผนังโลหะของเครื่องแลกเปลี่ยนความร้อนให้กับน้ำหล่อเย็นนั้นแย่กว่ากรณีของของเหลวมาก
  
ดังนั้นการจะเลือกใช้กระบวนการแบบใดนั้นนอกจากจะพิจารณาจากคุณสมบัติผลิตภัณฑ์ที่ต้องการแล้ว (กระบวนการของแต่ละเจ้าของเทคโนโลยีก็ให้พอลิเมอร์ที่มีข้อดีข้อเสียที่แตกต่างกัน) ก็ยังต้องพิจารณาข้อดีข้อเสียที่ได้กล่าวมาข้างต้นด้วย การผลิตในปัจจุบันจึงมีการใช้ทั้งสองกระบวนการ (คือผลิตในเฟสที่มีตัวทำละลายหรือเฟสแก๊ส) แต่สำหรับวันนี้จะเป็นการเล่าเรื่อง fluidised bed reactor ที่เป็น reactor ที่ใช้สำหรับการผลิตในเฟสแก๊ส
  
ในกรณีนี้แก๊สสารตั้งต้นที่ได้รับการผสมกับตัวเร่งปฏิกิริยาจะไหลผ่านเบดของอนุภาคที่เกิดจากพอลิเมอร์เจริญเติบโตห่อหุ้มอนุภาคตัวเร่งปฏิกิริยาเอาไว้ ตรงนี้ขอทบทวนนิดนึง คือในปฏิกิริยาการพอลิเมอร์ไรซ์พอลิโอเลฟินส์นั้น พอลิเมอร์ที่เกิดขึ้นจะเป็นของแข็งห่อหุ้มอนุภาคตัวเร่งปฏิกิริยาเอาไว้ ดังนั้นเมื่อชั้นพอลิเมอร์ที่ห่อหุ้มนั้นหนามากขึ้น แก๊สสารตั้งต้นก็จะไม่สามารถแพร่เข้าถึงอนุภาคตัวเร่งปฏิกิริยาได้ ปฏิกิริยาก็จะหยุด ดังนั้นในการเกิดปฏิกิริยาจึงจำเป็นต้องมีการเติมตัวเร่งปฏิกิริยาเข้าระบบตลอดเวลา ในกรณีของ fluidised bed นี้ ในช่วงแรกที่อนุภาคกำลังเริ่มโตนั้น อนุภาคจะถูกแก๊สที่ไหลเข้าทางด้านล่างนั้นพัดลอยออกจากเบดไปได้ จำเป็นต้องมีการดักกลับมาทำปฏิกิริยาใหม่ แต่เมื่ออนุภาคโตได้ที่ มันก็จะตกลงล่าง สามารถแยกออกจากเบดได้ทางด้านล่าง
   
รูปที่ ๑ จากเอกสารสิทธิบัตรประเทศสหรัฐอเมริกา US 3,023,203 Polymerization process (บริษัท Phillips Petroleum Company) ๒๗ กุมภาพันธ์ ค.ศ. ๑๙๖๒ (พ.ศ. ๒๕๐๕)

รูปที่ ๑ เป็น fluidised bed reactor ที่บริษัท Phillips Petroleum จดสิทธิบัตรเอาไว้ จะเห็นว่าตัว reactor นั้นมีลักษณะเป็นทรงกระบอกที่มีขนาดเส้นผ่านศูนย์กลางต่างกัน 3ชิ้นซ้อนกันอยู่ โดยตัวบนจะมีขนาดเส้นผ่านศูนย์กลางใหญ่สุดและตัวล่างจะมีขนาดเส้นผ่านศูนย์กลางเล็กสุด บริเวณที่เกิด fluidisationคือ reaction zone ตอนกลาง การที่ส่วนที่อยู่เหนือ reaction zone นี้มีขนาดเส้นผ่านศูนย์กลางใหญ่ขึ้นก็เพื่อลดความเร็วแก๊สที่ไหลขึ้น ทำให้อนุภาคบางส่วนที่ถูกแก๊สพัดพาออกจาก reaction zone นั้นตกกลับลงล่าง อนุภาคขนาดเล็กที่ไม่ตกกลับลงล่างจะถูกแยกออกด้วยไซโคลน (32) การดึงความร้อนส่วนเกิดของแก๊สร้อนที่ออกทางด้านบนนั้นใช้การระบายความร้อนด้วยอากาศที่เครื่องแลกเปลี่ยนความร้อน (36) ก่อนที่จะนำแก๊สที่ไม่ทำปฏิกิริยานั้นวนกลับมาทำปฏิกิริยาใหม่ด้วยการใช้ blower (12) ดูดแก๊สทางด้านบนและอัดกลับเข้าทางด้านล่างใหม่ ตัวเร่งปฏิกิริยาที่ป้อนเข้ามาใหม่ก็จะผสมเข้ากับแก๊สด้านขาออกจาก blower ในขณะเดียวกันก็มีการเติมแก๊สใหม่เข้ามาชดเชยส่วนที่เกิดเป็นพอลิเมอร์ เพื่อรักษาอัตราการไหลของแก๊สผ่าน fluidised bed ให้คงที่
  
อนุภาคพอลิเมอร์ที่มีขนาดใหญ่เกินกว่าที่แก๊สที่ไหลขึ้นนั้นจะพัดพาขึ้นไปได้ก็จะตกลงล่าง การที่ส่วนล่างนั้นมีขนาดเส้นผ่านศูนย์กลางเล็กก็เพื่อให้เกิดชั้นผงพอลิเมอร์ที่มีความสูงมากพอที่จะป้องกันไม่ให้เกิดการรั่วไหลของแก๊สภายในออกทางด้านล่าง ผงพอลิเมอร์ทางด้านล่างสุดจะถูกลำเลียงออกด้วยระบบสกรู ส่วนที่ว่าจะเอาเป็นเก็บไว้ในรูปของผงก่อนหรือจะไปทำการขึ้นรูปเป็นเม็ดพอลิเมอร์เลยนั้นก็ขึ้นอยู่กับความต้องการ
   
รูปที่ ๒ เป็น fluidised bed ที่บริษัท BP Chemical จดสิทธิบัตรเอาไว้ ลักษณะร่วมที่เหมือนรูปที่ ๑ คือด้านบน (3) ที่มีขนาดเส้นผ่านศูนย์กลางด้านล่าง (2) เพื่อลดความเร็วของแก๊สและทำให้อนุภาคที่หลุดติดไปนั้นตกลงล่าง ส่วนที่ยังไม่ตกลงล่างก็จะถูกแยกออกด้วยไซโคลน (6) ที่ติดตั้งอยู่ทางด้านนอก reactor ตัวเร่งปฏิกิริยานั้นจะป้อนเข้าทางท่อ (18) และดึงผงพอลิเมอร์ออกทางท่อ (19)
  
ความร้อนของแก๊สระบายออกด้วยเครื่องแลกเปลี่ยนความร้อน (12) ซึ่งในที่นี้ไม่ได้บอกว่าใช้อะไรเป็นแหล่งรับความร้อน แต่ที่เคยเห็นก็คือใช้น้ำหล่อเย็น พึงสังเกตนิดนึงว่าในรูปที่ ๑ และรูปที่ ๒ นั้น จะระบายความร้อนออกจากแก๊สก่อนเข้า blower หรือ compressor
   
รูปที่ ๒ จากเอกสารสิทธิบัตรประเทศสหรัฐอเมริกา US 4,882,400 Process for gas phase polymerization of olefins in a fluidized bed reactor (บริษัท BP Chemical) ๒๑ พฤศจิกายน ค.ศ. ๑๙๘๙ (พ.ศ. ๒๕๓๒)
   
รูปที่ ๓ นำมาจากเอกสารยื่นขอจดสิทธิบัตรสหภาพยุโรปโดยบริษัท Basell Polyolefine GmbH แต่สิทธิบัตรนี้ไม่ได้ขอจดสิทธิบัตรเรื่องกระบวนการผลิต (คือไม่ได้ขอจดในส่วนของตัว reactor) แต่ขอจดสิทธิบัตรเรื่องเทคนิคการดึงเอาแก๊สที่ผงพอลิเมอร์นั้นดูดซับเอาไว้ออก แต่รูปในสิทธิบัตรมีการวาดตัว fluidised bed เอาไว้ด้วย
   
รูปที่ ๓ เอกสารยื่นขอจดสิทธิบัตรสหภาพยุโรป European patent application EP 2 743 278 A1 Process for degassing and buffering polyolefin particles obtained by olefin polymerization (บริษัท Basell Polyolefine GmbH) ๑๘ มิถุนายน ค.ศ. ๒๐๑๔ (พ.ศ. ๒๕๕๗)
   
จุดที่อยากให้สังเกตคือตำแหน่งของ compressor (6) และเครื่องแลกเปลี่ยนความร้อน (7) ที่อยู่ในกรอบสีเหลี่ยมสีแดงทางด้านซ้าย คือจะว่าไปแล้วเนื้อหาในซีกซ้ายของรูปคือตั้งแต่ตัว reactor ออกมาทางด้านซ้ายนั้นไม่เกี่ยวข้องกับสิ่งที่เขาขอจดสิทธิบัตร เขาก็เลยวาดแบบคร่าว (จะเห็นว่าไม่มีการแสดงไซโคลนหรือหน่วยป้อนตัวเร่งปฏิกิริยาหรือจุดเติมแก๊สชดเชย) แต่ก็น่าจะวาดรูปออกมาให้ถูกหน่อย คือในรูปที่ ๓ นี้แก๊สจะเข้า compressor ก่อน จากนั้นจึงเข้าสู่เครื่องแลกเปลี่ยนความร้อนเพื่อระบายความร้อนออก แต่ในรูปที่ ๑ และ ๒ นั้นแก๊สจะเข้าสู่เครื่องแลกเปลี่ยนความร้อนก่อน จากนั้นจึงค่อยเข้าสู่ compressor คำถามก็คืองั้นแบบไหนดีกว่ากัน หรือว่าจะทำอย่างไรก็ได้แล้วแต่ความพอใจ
    
ประสิทธิภาพการทำงานของ compressor นั้นขึ้นอยู่กับอุณหภูมิของแก๊สที่ส่งผลต่อความหนาแน่นของแก๊ส กล่าวคือสำหรับแก๊สชนิดหนึ่งถ้าแก๊สมีอุณหภูมิต่ำ (คือมีความหนาแน่นสูง) ประสิทธิภาพการทำงานก็จะดีกว่าการอัดแก๊สชนิดนั้นที่มีอุณหภูมิสูง (หรือมีความหนาแน่นต่ำ) ด้วยเหตุนี้การอัดแก๊สให้ได้ความดันสูง ๆ นั้นจึงมักจะใช้การอัดหลายหลายขั้นตอน โดยมีการระบายความร้อนออกจากแก๊สในระหว่างขั้นตอนการอัดแต่ละขั้น
   
ในกรณีของแก๊สที่มีความว่องไวในการทำปฏิกิริยา เช่นเอทิลีนนั้น ถ้าอุณหภูมิของแก๊สขึ้นสูงเกินไปก็อาจทำให้แก๊สเอทิลีนเกิดปฏิกิริยาเป็นสารประกอบโมเลกุลใหญ่ภายในตัว compressor หรือท่อด้านขาออกได้ เช่นในกรณีของโรงงานผลิตเอทิลีนนั้น ในขั้นตอนการเพิ่มความดันให้กับแก๊สเอทิลีนก่อนเข้าสู่กระบวนการทำให้เป็นของเหลวเพื่อกลั่นแยก ก็ต้องระวังไม่ให้อุณหภูมิแก๊สในแต่ละขั้นตอนการอัดนั้นสูงถึงระดับประมาณ 93ºC ไม่เช่นนั้นอาจเกิดปฏิกิริยา Diels-Alder กลายเป็นสารประกอบโมเลกุลใหญ่ขึ้นได้ (ดู Memoir ปีที่ ๘ ฉบับที่ ๑๑๗๘ วันพฤหัสบดีที่ ๒ มิถุนายน ๒๕๕๙ เรื่อง "ทำความรู้จักกระบวนการผลิตเอทิลีนตอนที่ ๑๐ Charge gas compression ภาค ๒") ดังนั้นในกรณีของรูปที่ ๓ นี้ การจัดวางที่ถูกต้องจึงควรเป็นเครื่องแลกเปลี่ยนความร้อน (7) ก่อน จากนั้นจึงเป็น compressor (6)

สำหรับฉบับนี้ก็คงต้องขอจบลงเพียงแค่นี้ สวัสดีครับ

วันอาทิตย์ที่ 4 พฤศจิกายน พ.ศ. 2561

เพลิงไหม้และการระเบิดที่ BP Oil (Grangemouth) Refinery 2530(1987) Case 2 การระเบิดที่หน่วย Hydrocracker ตอนที่ ๑ MO Memoir : Sunday 4 November 2561

เพิ่งจะกู้ร่างผู้เสียชีวิตรายที่ ๒ จากเหตุการณ์ไฟไหม้ที่ระบบ Flare ได้เพียงแค่สัปดาห์เดียว ศพที่ ๓ ก็ตามมา แถมสถานที่เกิดเหตุก็อยู่ติด ๆ กันซะด้วย
 
การนำน้ำมันหนักมาแปรสภาพเป็นน้ำมันเบา (ระดับเบนซินไปจนถึงดีเซล) เป็นวิธีการหนึ่งในการเพิ่มมูลค่าให้กับผลิตภัณฑ์ และยังช่วยตอบสนองความต้องการน้ำมันเชื้อเพลิงสำหรับยานพาหนะที่มีจำนวนเพิ่มขึ้น การทำให้น้ำมันหนักที่มีโมเลกุลใหญ่นั้นกลายเป็นน้ำมันเบาต้องหาทางทำให้โมเลกุลของน้ำมันหนักนั้นแตกออกเป็นชิ้นเล็กลง และปัจจัยหนึ่งที่สำคัญสำหรับกระบวนการดังกล่าวก็คือความร้อน
 
ความอิ่มตัวของน้ำมันนั้นดูได้จากสัดส่วนระหว่างอะตอม H ต่ออะตอม C ถ้าสัดส่วนอะตอม H ต่ออะตอม C มีค่าสูงก็แสดงว่าเป็นน้ำมันที่มีความอิ่มตัวสูง แต่ถ้าสัดส่วนอะตอม H ต่ออะตอม C มีค่าต่ำก็แสดงว่าเป็นน้ำมันที่มีความไม่อิ่มตัวสูง เช่นอาจประกอบด้วยโครงสร้างที่เป็นวงแหวนอะโรมาติก (aromatic) อยู่เป็นจำนวนมาก

รูปที่ ๑ สถานที่เกิดเหตุหลังเหตุการณ์สงบ ในกรอบสีเหลี่ยมสีเหลืองคือตำแหน่งที่ตั้งของ Low pressure separator V306 ที่เกิดการระเบิดที่เหลือแต่ขาคอนกรีตที่ใช้วาง vessel
 
คำว่า "น้ำมันเบา" และ "น้ำมันหนัก" นั้นมาจากกระบวนการกลั่นน้ำมันในหอกลั่น โดยน้ำมันที่มีจุดเดือดต่ำจะกลายเป็นไอลอยขึ้นบนออกไปทางยอดหอกลั่น ในขณะที่น้ำมันที่มีจุดเดือดสูงจะเป็นของเหลวไหลออกทางด้านล่างของหอกลั่น เขาจึงเรียกน้ำมันที่มีจุดเดือดต่ำว่าน้ำมันเบา (เพราะมันลอยขึ้น) และที่มีจุดเดือดสูงว่าน้ำมันหนัก (เพราะมันไหลลงล่าง)
 
สำหรับน้ำมันหนักที่มีความอิ่มตัวสูง ที่องค์ประกอบส่วนใหญ่เป็นพวกพาราฟิน (paraffin CnH2n+2) หรือแนฟทีน (naphthene CnH2n) การทำให้โมเลกุลเหล่านี้แตกออกเป็นโมเลกุลเล็กลงทำได้ทั้งการใช้ความร้อนเพียงอย่างเดียวด้วยกระบวนการที่เรียกว่า thermal cracking หรือใช้ความร้อนร่วมกับการใช้ตัวเร่งปฏิกิริยาที่เรียกว่ากระบวนการ catalytic cracking (ที่เป็นที่รู้จักและใช้กันมากที่สุดในปัจจุบันคือรูปแบบ fluidised-bed catalytic cracking หรือที่เรียกย่อ ๆ ว่า FCC) ผลิตภัณฑ์ที่เกิดขื้นจากกระบวนการเหล่านี้จะมีส่วนที่เป็นองค์ประกอบที่ไม่อิ่มตัว (พวกที่มีพันธะ C=C) เกิดขึ้นรวมอยู่ด้วยเสมอ และถ้าโมเลกุลที่เกิดจากการแตกตัวครั้งแรกมีการแตกตัวย่อยลงไปอีก สัดส่วนผลิตภัณฑ์ที่มีความไม่อิ่มตัวนี้ก็จะเพิ่มสูงขึ้นเรื่อย ๆ
 
สำหรับน้ำมันหนักที่มีความไม่อิ่มตัวสูงเช่นพวกที่มีองค์ประกอบเป็น polyaromatic ring (วงแหวนเบนซีนหลายวงต่อเข้าด้วยกัน) การใช้ความร้อนเพียงอย่างเดียวจะยากที่จะทำให้โมเลกุลเหล่านี้แตกออกเป็นโมเลกุลเล็กลง (ก็มันไม่มีทางที่จะแตกออกเป็นโมเลกุลที่เล็กลงที่มีไม่อิ่มตัวสูงขึ้นไปอีก) การที่จะทำให้โมเลกุลพวก polyaromatic ring นี้แตกออกเป็นโมเลกุลเล็กลงจำเป็นต้องมีการเติมไฮโดรเจนให้กับโมเลกุลเหล่านี้ก่อน (เรียกว่าปฏิกิริยาการเติมไฮโดรเจนหรือ hydrogenation) เพื่อให้มันกลายเป็นไฮโดรคาร์บอนที่มีความอิ่มตัวสูงขึ้นก่อน จากนั้นจึงค่อยทำให้โมเลกุลไฮโดรคาร์บอนที่มีความอิ่มตัวสูงขึ้นนี้แตกออกเป็นโมเลกุลที่เล็กลง โดยใช้ความร้อนร่วมกับการเติมไฮโดรเจน (ที่ป้อนเข้าไปในรูปของแก๊สไฮโดรเจน) และใช้ตัวเร่งปฏิกิริยาช่วย ปฏิกิริยานี้เรียกว่า hydrocracking
 
แต่น้ำมันหนักมักจะมีสารประกอบอินทรีย์ของกำมะถัน (S) และไนโตรเจน (N) ปะปนมาเสมอ (โดยกำมะถันมักจะเป็นตัวที่มีมากที่สุดและพบเป็นประจำ) และบางทีก็อาจมีสารประกอบอินทรีย์ของออกซิเจน (O) และของโลหะบางชนิดเช่นวาเนเดียม (V) ปะปนมาด้วย ปริมาณของสารอินทรีย์เหล่านี้ขึ้นอยู่กับแหล่งที่มาของน้ำมัน ยิ่งเป็นน้ำมันที่หนักมาก (คือพวกที่มีจุดเดือดสูงมาก) ก็มักจะมีความเข้มข้นของสารอินทรีย์เหล่านี้มากขึ้นตามไปด้วย สารเหล่านี้อาจอยู่ในรูปโมเลกุลที่เป็นเส้น เช่น mercaptan (R-S-R') หรือ dimercaptan (R-S-S-R') หรือในโครงสร้างที่เป็นวงก็ได้ ดังตัวอย่างในรูปที่ ๒ ข้างล่าง

รูปที่ ๒ ตัวอย่างของสารประกอบกำมะถัน ไนโตรเจน และออกซิเจน ที่พบได้ในน้ำมันหนัก
 
น้ำมันที่มีสารประกอบอินทรีย์ของกำมะถันและไนโตรเจน ถ้านำไปเผาไหม้จะก่อให้เกิดแก๊สซัลเฟอร์ไดออกไซด์ (SO2) และไนโตรเจนออกไซด์ (NOx) แต่อีกเรื่องหนึ่งที่สำคัญคือสารเหล่านี้มีฤทธิ์เป็นเบสที่เป็นพิษต่อตัวเร่งปฏิกิริยาที่ใช้ในกระบวนการปรับสภาพและ/หรือเปลี่ยนแปลงโครงสร้างโมเลกุลของน้ำมันในกระบวนการผลิตขั้นตอนถัดไป ทำให้มีความจำเป็นที่ต้องกำจัดสารเหล่านี้ออก วิธีการกำจัดสารเหล่านี้กระทำได้โดยการให้สารเหล่านี้ทำปฏิกิริยากับแก๊สไฮโดรเจนภายใต้ความดันสูงและอุณหภูมิสูงโดยมีตัวเร่งปฏิกิริยาช่วย กระบวนการนี้เรียกว่า hydrotreating โดยกำมะถันจะถูกดึงออกไปในรูปของแก๊ส H2S (ด้วยปฏิกิริยา hydrodesulphurisation หรือย่อว่า HDS) และไนโตรเจนจะถูกดึงออกไปในรูปของแก๊ส NH3 (ด้วยปฏิกิริยา hydrodenitrogenation หรือ HDN)

ความเป็นเบสของสารประกอบอินทรีย์เหล่านี้คือความเป็นเบสแบบลิวอิส (Lewis base) คืออะตอม S N และ O มีอิเล็กตรอนคู่โดดเดี่ยว (lone pair electron) ที่สามารถสะเทินความเป็นกรดของตัวเร่งปฏิกิริยา (ที่อาจอยู่ในรูปของ H+ หรือไอออนบวกของโลหะเช่น Al3+) ตัวอย่างของหน่วยที่ใช้ตัวเร่งปฏิกิริยาที่เป็นกรดได้แก่ catalytic cracking

รูปที่ ๓ เป็นแผนผังของหน่วย hydrocracker ของโรงกลั่นน้ำมัน BP Oil Refinery ที่เมือง Grangemouth ที่เกิดการระเบิด หน่วยนี้ประกอบด้วยเครื่องปฏิกรณ์ชนิดเบดนิ่ง (fixed-bed reactor) จำนวน ๔ ตัว ที่แต่ละตัววางตั้งในแนวดิ่ง ทำงานภายใต้บรรยากาศของแก๊สไฮโดรเจนที่ความดัน 155 bar อุณหภูมิ 350ºC น้ำมันจะถูกป้อนมาเก็บไว้ยัง feed surge drum V308 ด้วยอัตราการไหลประมาณ 3500 l/min ก่อนจะป้อนเข้าสู่เครื่องปฏิกรณ์

"surge drum" เป็นถังพักที่ช่วยดูดซับความแปรปรวนของหน่วยหนึ่งไม่ให้ส่งผลกระทบต่อการทำงานของหน่วยที่อยู่ในขั้นตอนติดกัน เช่นหน่วย A อาจมีการทำงานที่ไม่คงที่ แต่หน่วย B ที่อยู่ถัดไปต้องการการทำงานคงที่ หรือในทางกลับกันคือหน่วย A มีการทำงานที่คงที่ แต่หน่วย ฺB ที่อยู่ถัดไปมีการทำงานที่ไม่คงที่ ตัวอย่างเช่นสมมุติว่ากระบวนการ B นั้นต้องการให้เดินเครื่องที่สภาวะคงตัวที่อัตรา 3500 l/min แต่กระบวนการ A ที่อยู่ต้นทางนั้นที่ป้อนวัตถุดิบให้นั้นมีการเดินเครื่องที่เปลี่ยนแปลงในช่วง 2000-5000 l/min ในกรณีเช่นนี้การติดตั้ง surge drum ที่มีความจุที่เหมาะสมที่ทำหน้าที่รองรับวัตถุดิบที่มาจากกระบวนการ A จะช่วยป้องกันไม่ให้อัตราการไหลที่ไม่คงที่ของหน่วย A ส่งผล กระทบต่อการทำงานของหน่วย B ได้ (อย่างน้อยก็เป็นช่วงระยะเวลาหนึ่ง) กล่าวคือถ้าหน่วย A ป้อนสารมาด้วยอัตราที่ต่ำกว่าที่หน่วย B ต้องการ หน่วย B ก็จะดึงสารที่อยู่ใน surge drum มาใช้ และในทางกลับกันถ้าสารที่มาจากหน่วย A สูงเกินกว่าความสามารถของหน่วย B ดึงไปใช้ได้ สารนั้นก็จะถูกสะสมไว้ใน surge drum
 
"fixed-bed reactor" ในที่นี้หมายถึงเครื่องปฏิกรณ์ที่บรรจุตัวเร่งปฏิกิริยาของแข็งเอาไว้ข้างใน โดยตัวเร่งปฏิกิริยานั้นอยู่กับที่ ไม่มีการเคลื่อนไหวใด ๆ แบบเดียวกับเครื่องกรองน้ำที่มีการบรรจุเรซินหรือสารดูดซับเอาไว้ข้างใน แต่การทำงานของระบบ hydrocracker นี้เป็นการทำงานในระบบ ๓ เฟสด้วยกัน คือตัวเร่งปฏิกิริยาที่เป็นของแข็ง น้ำมันที่เป็นของเหลว และไฮโดรเจนที่เป็นแก๊ส รูปแบบการทำงานแบบ ๓ เฟสนี้มีชื่อเรียกเฉพาะว่า "trickle bed reactor" ที่จะมีการป้อนของเหลวจากบนลงล่างให้ไหลผ่านชั้นตัวเร่งปฏิกิริยา ส่วนแก๊สนั้นอาจจะไหลจากบนลงล่างหรือล่างขึ้นบนก็ขึ้นอยู่กับการออกแบบ ระบบนี้แตกต่างจาก fixed-bed reactor ทั่วไปที่ใน fixed-bed reactor นั้นเฟสที่ไหลผ่านชั้นของแข็งนั้นจะเป็นเฟสแก๊สหรือของเหลวเพียงเฟสเดียว

อุณหภูมิของเครื่องปฏิกรณ์จะถูกควบคุมเอาไว้ไม่ให้สูงเกินกว่า 425ºC (ในรายงานเรียกว่าอุณหภูมิ tempetature cut out หรือ TOC) และเมื่ออุณหภูมิสูงถึงระดับนี้ระบบจะหยุดการทำงานด้วยการหยุดการป้อนสารตั้งต้นและระบายความดันออกสูงระบบ flare แต่ยังคงทำการหมุนเวียนแก๊สไฮโดรเจนเพื่อช่วยระบายความร้อนออกจากาเบดตัวเร่งปฏิกิริยา

รูปที่ ๓ ผังการทำงานของหน่วยHydrocracker ที่เกิดการระเบิด ในรายงานไม่ได้กล่าวเอาไว้ว่า hydrotreating ทั้งสองหน่วย (V301 และ V302) ทำหน้าที่อะไร แต่เดาว่าตัวหนึ่งน่าจะเป็นหน่วยกำจัดสารประกอบกำมะถัน และอีกตัวหนึ่งเป็นหน่วยกำจัดสารประกอบไนโตรเจน

น้ำมันที่ออกจากกระบวนการ hydrocracking จะไหลผ่านระบบเครื่องแลกเปลี่ยนความร้อนเพื่อนำกลับพลังงานความร้อนไปใช้ประโยชน์ ก่อนที่จะไหลเข้าสู่ถังแยกน้ำมัน-ไฮโดรเจนความดันสูงที่เป็นถังวางตั้งในแนวดิ่ง (V305) ที่อุณหภูมิประมาณ 50ºC ณ ถังแยกนี้แก๊สไฮโดรเจนจะลอยตัวขึ้นบนก่อนถูกคอมเพรสเซอร์ (C301) ดูดเพื่อนำกลับไปใช้ทำปฏิกิริยาใหม่พร้อมกับไฮโดรเจนที่ป้อนเข้ามาเพิ่มเติม ตัวคอมเพรสเซอร์ C301 นี้จะเกิดการสั่นอย่างรุนแรงถ้าหากผลต่างความดันระหว่างด้านขาเข้าและด้านขาออกนั้นมากเกินไป ดังนั้นถ้าพบว่าคอมเพรสเซอร์มีการสั่นมากเกินไปก็จะต้องหยุดการทำงานของคอมเพรสเซอร์เพื่อป้องกันความเสียทาย

centrifugal compressor ใช้การเพิ่มพลังงานจลน์ให้กับแก๊สที่ถูกเหวี่ยงออกไปจากใบพัด แล้วให้พลังงานจลน์ที่แก๊สได้รับไปนั้นเปลี่ยนเป็นความดันอีกทีหนึ่ง (แบบเดียวกันกับปั๊มหอยโข่ง) เนื่องจากความเร็วรอบการหมุนของใบพัดที่หมุนเหวี่ยงแก๊สออกไปนั้นคงที่ (ถ้าใช้ induction motor เป็นตัวขับเคลื่อนคอมเพรสเซอร์ ซึ่งส่วนใหญ่ก็ใช้กัน) ดังนั้นพลังงานจลน์ของแก๊สที่ถูกเหวี่ยงออกไปนั้นจึงขึ้นกับความหนาแน่นของแก๊ส ที่อุณหภูมิและความดันค่าหนึ่งความหนาแน่นของแก๊สจะเพิ่มตามน้ำหนักโมเลกุล แก๊สที่มีน้ำหนักโมเลกุลสูงจะมีพลังงานจลน์ที่สูงกว่าแก๊สที่มีน้ำหนักโมเลกุลที่ต่ำกว่า ดังนั้นถ้าหากออกแบบ centrifugal compressor ให้ทำงานกับแก๊สที่มีน้ำหนักโมเลกุลค่าหนึ่ง ถ้าหากแก๊สที่ไหลเข้ามานั้นมีน้ำหนักโมเลกุลที่ลดต่ำกว่าค่าที่ออกแบบไว้มากเกินไป ก็จะเกิดปัญหาในการทำงานของคอมเพรสเซอร์ตัวนั้นได้เพราะความดันของแก๊สที่ถูกเหวี่ยงออกไปที่ขอบใบพัดนั้นต่ำกว่าความดันด้านขาออก ปรากฏการณ์นี้จะทำให้แก๊สด้านขาออกมีการไหลย้อนเข้ามาในตัวใบพัด ในขณะที่ใบพัดพยายามที่จะเหวี่ยงแก๊สที่ดูดเข้ามานั้นออกไป ผลก็คือจะเกิดการสั่นอย่างรุนแรงขึ้นได้ที่เรียกว่าเกิด surging (ดูรูปที่ ๔ ข้างล่างประกอบ)

รูปที่ ๔ แก๊สไหลเข้า impeller ที่ตำแหน่ง 1 ซึ่งเป็นตำแหน่งที่แก๊สมีพลังงานจลน์ต่ำสุด และในขณะที่แก๊สไหลมาตามตัว impeller (ตำแหน่ง 2) แก๊สจะมีพลังงานจลน์เพิ่มมากขึ้นอันเป็นผลเนื่องจากการหมุนของ impeller และเมื่อไหลมาถึงตำแหน่ง 3 ที่เป็นทางออก แก๊สจะมีพลังงานจลน์มากที่สุด ถ้าหากพลังงานจลน์ของแก๊สที่ตำแหน่ง 3 นี้เมื่อเปลี่ยนเป็นความดันแล้วมีค่าสูงกว่าความดันต้านทานด้านขาออก แก๊สก็จะไหลออกจาก impeller ไปได้ แต่ถ้าพลังงานจลน์ของแก๊สที่ตำแหน่ง 3 นี้เมื่อเปลี่ยนเป็นความดันแล้วมีค่าต่ำกว่าความดันต้านทานด้านขาออก แก๊สด้านขาออกก็จะไหลย้อนเข้ามาในตัว impeller ได้ และเมื่อแก๊สด้านขาออกขยายตัวด้วยการไหลย้อนเข้ามาในตัว impeller ความดันต้านทานด้านขาออกก็จะลดต่ำลง แก๊สใน impeller ก็จะไหลออกไปยังด้านขาออกได้ใหม่ แก๊สด้านขาออกก็จะถูกอัดตัวอีกครั้งทำให้มีความดันสูงขึ้น และถ้าพลังงานจลน์ของแก๊สที่ตำแหน่ง 3 ไม่สามารถเอาชนะความดันด้านขาออกได้ ก็จะเกิดการไหลย้อนเข้ามาในตัว impeller ใหม่อีกครั้ง ถ้าปรากฏการณ์ไหลออก-ไหลย้อนนี้เกิดสลับไปมาเรื่อย ๆ ก็จะทำให้ตัว impeller เกิดการสั่นขึ้น (วาดขึ้นใหม่โดยอิงจาก https://www.enggcyclopedia.com/2012/01/centrifugal-compressor-surge/)
 
ในระหว่างขั้นตอน hydrotreating และ hydrocracking จะมีผลิตภัณฑ์ที่เป็นแก๊สเกิดขึ้นด้วย (ได้แก่ H2S และไฮโดรคาร์บอนเบา) โดยแก๊สส่วนหนึ่งจะยังคงละลายอยู่ในส่วนที่เป็นของเหลว น้ำมันที่ผ่านการแยกเอาแก๊สออกที่ V305 จะไหลลงสู่ถังแยกน้ำมัน-ไฮโดรเจนความดันต่ำที่เป็นถังวางในแนวนอน (V306) ทำงานที่ความดันประมาณ 9 bar ที่ถังนี้จะมีแก๊สไฮโดรเจนและไฮโดรคาร์บอนเบาระเหยออกมาจากน้ำมันเพิ่มอีกอันเป็นผลจากความดันที่ลดต่ำลง ของเหลวที่ออกจากถังแยก V306 นี้จะถูกส่งเข้าระบบเครื่องแลกเปลี่ยนความร้อนก่อนป้อนเข้าสู่หน่วยกลั่นแยกเพื่อแยกเอาผลิตภัณฑ์ที่ได้ออก และนำกลับน้ำมันส่วนที่ยังไม่ทำปฏิกิริยามาทำปฏิกิริยาใหม่ ส่วนแก๊สที่ออกจากถังแยก V306 จะถูกส่งต่อไปยังหน่วยกำจัดกำมะถันต่อไป (กำมะถันควรอยู่ในรูปแก๊ส H2S และใช้สารละลาย amine ที่เป็นเบสดักจับ)

รูปที่ ๕ รายละเอียดของถังแยกแก๊ส-ของเหลว V305 (ถังความดันสูง) และ V306 (ถังความดันต่ำ)

มาถึงจุดนี้ก็หวังว่าคงจะพอมองเห็นภาพการทำงานของหน่วย hydrocracker ของโรงงานนี้กันบ้างแล้ว ตอนต่อไปจะมาดูกันว่าก่อนเกิดการระเบิดนั้นมีเหตุการณ์อะไรเกิดขึ้นบ้าง