แสดงบทความที่มีป้ายกำกับ IR แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ IR แสดงบทความทั้งหมด

วันอังคารที่ 4 มิถุนายน พ.ศ. 2562

การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๖) MO Memoir : Tuesday 4 June 2562

Probe molecule ตัวหลักที่ใช้ในการจำแนกความเป็นกรดแบบ Brönsted หรือ Lewis บนพื้นผิวของแข็งเห็นจะได้แก่ไพริดีน (pyridine C5H5N) เนื่องจากไพริดีนที่เกาะบนกรดแบบ Brönsted หรือ Lewis นั้นมีรูปแบบการสั่นที่แตกต่างกัน (รูปที่ ๑) ที่ดูดกลืนรังสีอินฟราเลข ณ ตำแหน่งเลขคลื่นที่แตกต่างกันอย่างชัดเจน โดยไพริดีนที่เกาะบนตำแหน่งกรด Brönsted จะกลายเป็น pyridimium ion ที่ดูดกลืนรังสีอินฟราเลขที่เลขคลื่น 1540 cm-1 และไม่เปลี่ยนแปลงไปตามความแรงของกรด ในขณะที่ไพริดีนที่เกาะบนตำแหน่งกรด Lewis จะดูดกลืนรังสีอินฟราเลขที่เลขคลื่น 1445 และ 1460 cm-1 และมีแนวโน้มที่จะเพิ่มขึ้นเมื่อความแรงเพิ่มขึ้น

รูปที่ ๑ รูปแบบการเกาะบนตำแหน่งกรดแบบ Brönsted หรือ Lewis ของ (ซ้าย) ไพริดีนและ (ขวา) ไดเมทิลไพริดีน

ในสภาพที่เป็นของเหลวนั้น NH3 มีฤทธิ์ที่เป็นเบสที่แรงกว่าไพริดีน แต่ในสภาพที่เป็นไอนั้นไพริดีนมีฤทธิ์ที่เป็นเบสที่แรงกว่า NH3 ดังนั้นถ้าพิจารณาในแง่ของความแรงแล้ว ไพริดีนจะเข้าจับกับตำแหน่งกรดที่อ่อนได้ดีกว่า NH3 แต่ถ้าพิจารณาในแง่ของขนาดโมเลกุลแล้ว ไพริดีนที่มีขนาดโมเลกุลใหญ่กว่าจะเข้าถึงตำแหน่งที่เป็นกรดที่อยู่ในรูพรุนขนาดเล็กได้ยากกว่า และด้วยการที่มันเป็นของเหลวที่อุณหภูมิห้อง การให้ตัวอย่างดูดซับไพริดีนจึงต้องทำในสภาวะสุญญากาศ ทั้งนี้เพื่อให้ไพริดีน ระเหยกลายเป็นไอได้ที่อุณหภูมิห้อง (จากประสบการณ์ที่เคยทำมาพบว่ามันยังมีปัจจัยอื่นมากกว่านี้อีกในส่วนของการออกแบบอุปกรณ์และเทคนิคการวิเคราะห์ เพราะถ้าทำไม่ถูกวิธีก็มีสิทธิ์ที่จะไม่สามารถทำให้ตัวอย่างดูดซับไพริดีนได้)
 
การมีหมู่อัลคิลมาเกาะที่วงแหวนไพริดีนจะทำให้ความเป็นเบสของไพริดีนแรงขึ้น (ผลจากการที่หมู่อัลคิลเป็นหมู่จ่ายอิเล็กตรอน จึงช่วยทำให้อะตอม N จ่ายอิเล็กตรอนได้ดีขึ้นเมื่อมีไอออนบวกมาดึงอิเล็กตรอนจากอะตอม N) และจะส่งผลมากถ้าหากเกาะที่ตำแหน่ง 2 และ 6 (คือด้านซ้ายและขวาของอะตอม N) แต่การที่มีหมู่อัลคิลมาเกาะก็ทำให้โมเลกุลมีจุดเดือดเพิ่มสูงขึ้น (ทำให้ยากต่อการทำให้กลายเป็นไอ) เกิดปัญหาเรื่องการแพร่เข้าไปในรูพรุนขนาดเล็กและการยึดเกาะบนตำแหน่งกรด Brönsted แต่ปัญหาสองข้อหลังนี้อาจเป็นข้อดีก็ได้ในกรณีที่สารตั้งต้นของปฏิกิริยาที่เราสนใจนั้นมีขนาดโมเลกุลใหญ่ การใช้ probe molecule ที่มีขนาดใหญ่จึงเป็นการวัดตำแหน่งที่เป็นกรดที่สารตั้งต้นนั้นสามารถเข้าถึงได้จริง และยังสามารถใช้ประโยชน์ในการแยกแยะว่าปฏิกิริยาชอบที่จะเกิดบนตำแหน่งกรด Brönsted หรือ Lewis เพราะหมู่ขนาดใหญ่ที่มาเกาะที่ตำแหน่ง 2 และ 6 นั้นจะทำให้ยากที่อะตอม N จะทำปฏิกิริยากับตำแหน่งกรด Lewis

รูปที่ ๒ การเกาะของ 2,6-dimethylpyridine บน γ-Al2O3 ในบทความนี้ระบุว่าการดูดกลืนที่ 1618 cm-1 (ตรงลูกศรสีแดงชี้) เป็นการเกาะบนตำแหน่งกรด Brönsted ที่อ่อน บทความนี้น่าจะเป็นบทความแรกที่นำเสนอเรื่องนี้

จุดเด่นอย่างหนึ่งของการใช้ไพริดีนหรือไพริดีนที่มีหมู่แทนที่ (substituted pyridines) คือในกรณีของการทำปฏิกิริยากับตำแหน่งกรด Lewis ที่มีการสร้างพันธะโควาเลนซ์ระหว่างไอออนบวก (ที่เป็นกรด Lewis ด้วยการรับคู่อิเล็กตรอน) กับอะตอม N ของวงไพริดีนนั้น (ที่เป็นเบส Lewis ด้วยการให้คู่อิเล็กตรอน) ความแข็งแรงของพันธะนี้ขึ้นอยู่กับความแรงของกรด Lewis (ที่จะดึงอิเล็กตรอนออกจากวงแหวนได้มาน้อยเท่าใด) จึงส่งผลต่อรูปแบบการสั่นของวงแหวนไพริดีนด้วย ทำให้มีความเป็นไปได้ที่จะดูการดูดกลืนคลื่นแสงที่เปลี่ยนแปลงไปเมื่อมีการยึดเกาะบนตำแหน่งกรด Lewis ที่มีความแรงแตกต่างกันโดยไม่จำเป็นต้องใช้เทคนิคการเพิ่มอุณหภูมิไล่เบส (ในกรณีของตำแหน่งกรด Brönsted นั้น ตัวโมเลกุลจะรับ H+ แล้วกลายเป็นไอออน รูปแบบการสั่นจึงไม่เปลี่ยนแปลงไปตามความแรงของตำแหน่งกรด Brönsted) แต่ทั้งนี้การแปลผลก็ยังต้องใช้ความระมัดระวังดังตัวอย่างที่ยกมาให้ดูในที่นี้
 
บทความในรูปที่ ๒ นั้นอาจเป็นบทความแรก ๆ ที่กล่าวถึงการใช้ 2,6-dimethylpyridine เป็น probe molecule ในการจำแนกชนิดและความแรงของกรดบนพื้นผิวของแข็ง ในบทความนี้มีการกล่าวว่าโมเลกุลนี้ไม่สามารถแยกแยะระหว่างกรด Lewis ที่มีความแรงแตกต่างกัน (ดังปรากฏในบทคัดย่อ) ส่วนในกรณีของกรด Brönsted นั้นมีการกล่าวถึงการดูดกลืนที่ตำแหน่งเลขคลื่น 1618 cm-1 ว่าเกิดจาก 2,6-dimethylpyridine รับโปรตอนจากตำแหน่งกรด "Brönsted" ที่อ่อน

รูปที่ ๓ อีกบทความหนึ่งที่ตีพิมพ์ในอีก ๑๗ ปีให้หลังที่มีการทดสอบหาว่าการดูดกลืนที่ 1618 cm-1 ของ 2,6-dimethylpyridine เกิดจากการดูดซับที่ตำแหน่งใด คอลัมน์ด้านซ้ายที่เป็น Introduction นั้นตัดมาเฉพาะสองย่อหน้าสุดท้ายที่มีการกล่าวถึงข้อถกเถียงถึงรูปแบบการยึดเกาะที่ตำแหน่งดังกล่าว ส่วนคอลัมน์ด้านขวาเป็นส่วนของข้อสรุปโดยตัดมาเฉพาะข้อแรกที่กล่าวว่าดูดกลืนที่ 1618 cm-1 เป็นรูปแบบการสั่นแบบ 8a ของโมเลกุล 2,6-dimethylpyridine ที่เกาะบนตำแหน่งกรด Lewis ส่วนที่ว่ารูปแบบการสั่นแบบ 8a เป็นอย่างใดก็ดูได้ในรูปที่ ๔

ดูเหมือนว่าต้นตอของการดูดกลืนที่ตำแหน่งเลขคลื่น 1618 cm-1 คืออะไรนั้นจะเป็นข้อถกเถียงต่อเนื่องกันมาหลายปี ตัวอย่างเช่นบทความที่นำมาให้ดูในรูปที่ ๓ ที่ตีพิมพ์หลังบทความในรูปที่ ๒ ถึง ๑๗ ปีก็ยังพยายามหาคำตอบอยู่ ข้อสรุปจากผลการทดลองที่บทความในรูปที่ ๓ กล่าวไว้ก็คือตำแหน่งดังกล่าวเกิดจากการที่ 2,6-dimethylpyridine ทำปฏิกิริยากับตำแหน่งกรด "Lewis" เรียกว่าได้ข้อสรุปไปกันคนละทาง ซึ่งจะว่าไปมันก็มีความเป็นไปได้อยู่เพราะหมู่ -CH3 ก็ไม่ได้ใหญ่อะไรนัก ยังพอที่จะทำให้อะตอม N ทำปฏิกิริยากับไอออนบวกที่อยู่ที่ตำแหน่งที่เหมาะสมบนพื้นผิวได้ ส่วนผลสรุปสุดท้ายว่าในที่สุดแล้วอันไหนได้รับการยอมรับกันนั้นคงจะไม่ขอกล่าวในที่นี้ เพราะไม่ได้ตามเรื่องนี้โดยละเอียด
  
จะเห็นนะครับว่าการพยายามอธิบายผลการทดลองด้วยการใช้บทความยืนยัน แม้แต่ผลเดียวกันก็สามารถหาบทความที่ให้ข้อสรุปที่ตรงข้ามกันได้ 

รูปที่ ๔ ชื่อต่าง ๆ ของรูปแบบการสั่นของวงแหวนเบนซีนจากบทความของ M. Alcolea Palafoxa and F. J. Meléndezb, "A comparative study of the scaled vibrational frequencies in the local anesthetics procaine, tetracaine and propoxycaine by means of semiempirical methods: AM1, PM3 and SAM1", Journal of Molecular Structure: THEOCHEM Vol. 459, Issues 1–3, 8 February 1999, Pages 239-271
 
อันที่จริงบทความของ Lercher และคณะยังมีเรื่องราวเกี่ยวกับ probe molecule ตัวอื่นอีก แต่ก็ค่อนข้างจะเป็นการเฉพาะกับปฏิกิริยา ข้อเสียอย่างหนึ่งของการใช้ไพริดีนคือการวัด "ปริมาณ" ของตำแหน่งที่เป็นกรดแต่ละชนิด (คือจะแยกว่ามี Brönsted หรือ Lewis อย่างละเท่าใด) ทำได้ยาก เพราะพีคสัญญาณการดูดกลืนอินฟราเรดนั้นมักซ้อนทับกับพีคอื่นจำนวนมาก (ดูในรูปที่ ๒ ดูก็ได้) หรือแม้แต่การระบุตำแหน่งพีคเองก็อาจทำได้ยาก เพราะพีคที่มีขนาดใกล้กันและอยู่เคียงข้างกันนั้น เมื่อมาซ้อนทับกันก็อาจทำให้ตำแหน่งปรากฏของพีครวมนั้นแตกต่างไปจากตำแหน่งที่แท้จริงของแต่ละพีค หรืออาจเห็นเป็นแค่ "ไหล่ (shoulder)" เท่านั้น การหาตำแหน่งที่ถูกต้องต้องใช้การทำ peak deconvolution ซึ่งจำเป็นต้องใช้คอมพิวเตอร์ช่วยประมวลผล ซึ่งปัจจุบันเป็นเรื่องที่ทำได้ง่ายแต่ในอดีตนั้นเป็นเรื่องที่ยากที่จะทำ ดังนั้นการหาปริมาณเบสจากพื้นที่หรือความสูงของพีคนั้นจึงมีความไม่แน่นอนอยู่สูง
 
แม้การใช้การวัดปริมาณเบสที่คายซับออกมาเมื่อเพิ่มอุณหภูมิตัวอย่างให้สูงขึ้นก็ทำได้ยาก เพราะการทำให้ไพริดีน (หรือสารกลุ่มนี้) กลายเป็นไอระเหยได้นั้นต้องทำในสุญญากาศ และในการให้ความร้อนไล่ก็ต้องมีการทำสุญญากาศเพื่อดึงเอาโมเลกุลที่พื้นผิวคายออกมานั้นออกจากระบบตลอดเวลา การที่จะรวบรวมโมเลกุลที่ระเหยออกมานี้ส่งต่อไปยังอุปกรณ์วิเคราะห์ตัวอื่นเพื่อวัดปริมาณจึงไม่ใช่เรื่องง่ายเท่าใดนัก (คือถ้าจะทำจริง ๆ ก็ทำได้ คงขึ้นอยู่กับว่าจะวิเคราะห์ด้วยเทคนิคอะไร แต่ก็ต้องระวังไม่ให้โมเลกุลที่ระเหยออกมาจากตัวอย่างที่มีอุณหภูมิสูง เกิดการควบแน่นในระบบ downstream) ไม่เหมือนกับ NH3 ที่เป็นแก๊สที่อุณหภูมิห้อง จึงสามารถส่งต่อไปยังอุปกรณ์วัดตัวอื่น (เช่น thermal conductivity detector หรือ mass spectroscopy) ด้วยการใช้แก๊สตัวอื่นนำพาไปได้
 
ปิดท้ายที่ว่างของหน้าด้วยรูป sample cell ของอุปกรณ์ที่เคยใช้วัด pyridine adsorption ที่ต่อร่วมกับนิสิตปริญญาโทในที่ปรึกษาเมื่อปีราว ๆ ปี ๒๕๓๙ เอาไว้หน่อย ซึ่งการวัดมันก็ไม่ยากหรอก ..... ถ้ารู้เทคนิค :) :) :)

รูปที่ ๕ Sample cell สำหรับใส่ตัวอย่างเพื่อวัดการดูดกลืนรังสีอินฟราเรดของโมเลกุลที่เกาะอยู่บนพื้นผิวของแข็ง

วันพฤหัสบดีที่ 30 พฤษภาคม พ.ศ. 2562

การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๕) MO Memoir : Thursday 30 May 2562

หลังจากทิ้งเรื่องนี้ไปเดือนเศษก็ได้เวลากลับมาเล่าต่อ คราวนี้จะเป็นเรื่องของ probe molecule ตัวที่นิยมใช้กันมากที่สุดในการวัดปริมาณตำแหน่งที่เป็นกรดบนพื้นผิวของแข็ง ก็คือแอมโมเนียหรือ NH3 นั่นเอง
 
บทความของ Lercher และคณะกล่าวถึง NH3 ไว้ในหัวข้อ 5.3 NH3 มีจุดเด่นหลาย ๆ ข้อเช่น 
  
- การที่โมเลกุลมีขนาดเล็กจึงทำให้ NH3 สามารถแพร่เข้าไปใน micro pore ได้ เรียกว่าสามารถเข้าไปถึงตำแหน่งที่เป็นกรดทุกตำแหน่งไม่ว่าจะอยู่ในรูพรุนขนาดไหนก็ได้ 
  
- การที่มันเป็นแก๊สที่อุณหภูมิห้อง ทำให้ง่ายในการทำให้พื้นผิวดูดซับเอาไว้และกำจัดโมเลกุลส่วนเกินออก 
  
- การที่โมเลกุลมีโครงสร้างส่วนที่เป็นเบสที่เด่น (อิเล็กตรอนคู่โดดเดี่ยวของอะตอม N) และโครงสร้างส่วนที่เป็นกรดนั้นเป็นกรดที่อ่อนมาก (ค่า pKa ของ NH3 ไปเป็น NH2- และ H+ ในน้ำนั้นอยู่ที่ประมาณ 9)
 
คาร์บอนมอนออกไซด์หรือ CO ก็เป็นโมเลกุลที่มีขนาดเล็กตัวหนึ่งที่มีฤทธิ์เป็น Lewis base (เกิดจากอิเล็กตรอนคู่โดดเดี่ยวที่อะตอม C) แต่มีฤทธิ์เป็นเบสที่อ่อนมาก จึงไม่เหมาะที่จะนำมาใช้วัดปริมาณตำแหน่งกรดทั้งหมด เว้นแต่ต้องการวัดเฉพาะปริมาณตำแหน่งกรดที่มีความแรงสูง

รูปที่ ๑ รูปแบบการเกาะของโมเลกุล NH3 บนตำแหน่งกรด Brönsted และ Lewis

รูปแบบการเกาะของโมเลกุล NH3 บนตำแหน่งกรด Brönsted และ Lewis แสดงไว้ในรูปที่ ๑ ในกรณีการเกาะบนตำแหน่งกรด Brönsted นั้นโมเลกุล NH3 จะกลายเป็น ammonium ion NH4+ (หรืออาจเรียกว่าอยู่ในรูปที่เป็น protonated molecule) ที่ดูดกลืนแสงอินฟราเรดที่เลขคลื่น 1450 และ 3300 cm-1 แต่ถ้าเกาะบนตำแหน่งกรด Lewis จะอยู่ในรูปที่เรียกว่าเป็น coordinatively bound ammonia ที่ดูดกลืนแสงอินฟราเรดที่เลขคลื่น 1250, 1630 และ 3300 cm-1 โดยในทางปฏิบัติจะนิยมใช้การดูดกลื่นแสงที่เลขคลื่น 1450 cm-1 เป็นตัวบ่งบอกการเกิดไอออน NH4+ ที่เกิดจากการทำปฏิกิริยากับตำแหน่งกรด Brönsted และใช้การดูดกลื่นแสงที่เลขคลื่น 1630 cm-1 เป็นตัวบ่งบอกการเกิดการทำปฏิกิริยากับตำแหน่งกรด Lewis โดย Lercher และคณะยังกล่าวไว้ว่าไม่สามารถใช้ค่าการดูดกลืนที่ตำแหน่งกรด Brönsted เพื่อบ่งความแรงของตำแหน่งกรดนั้นว่าแตกต่างกันหรือไม่ และแม้แต่การแปลผลว่าตำแหน่งกรด Lewis มีความแรงที่แตกต่างกันหรือไม่โดยพิจารณาจากค่าการดูดกลืนแสงอินฟราเรดที่ตำแหน่งกรด Lewis ก็ยังต้องใช้ความระมัดระวังอย่างยิ่ง
 
ในย่อหน้าที่ ๒ ของหัวข้อ 5.3. Ammonia ในหน้า 361 ในบทความของ Lercher และคณะ ที่นำมาแสดงไว้ในรูปที่ ๒ ข้างล่างยังได้กล่าวถึงปัญหาที่อาจเกิดจากการที่โมเลกุล NH3 มีการทำปฏิกิริยาแทนที่หมู่ -OH บนพื้นผิว หรือทำปฏิกิริยาเปลี่ยนสารประกอบออกไซด์ไปเป็นสารประกอบไนไตรด์ (nitride) ตรงนี้ลองอ่านเองดูก่อนนะครับ

รูปที่ ๒ ย่อหน้าสุดท้ายของหัวข้อ 5.3. Ammonia หน้า 361 ในบทความของ Lercher และคณะ ลองอ่านดูเอาเองก่อนนะครับว่าคุณเข้าใจความหมายอย่างไร

ประโยคแรกในรูปที่ ๒ นั้นเป็นคำเตือนให้ระวังสิ่งที่อาจเกิดขึ้นเมื่อใช้ NH3 เป็น probe molecule ก็คือที่อุณหภูมิสูงเกินกว่า "500 K" (หน่วยเคลวิน) นั้น NH3 มีแนวโน้มที่จะเกิดการดูดซับแบบแตกตัว คือกลายเป็นหมู่ -NH2 หรือ -NH- บนตำแหน่งกรด Lewis หรือเข้าไปแทนที่หมู่ -OH (คือ NH3 ทำปฏิกิริยากับ -OH กลายเป็น -NH2 กับ H2O) โดยได้อ้างอิงไปยังเอกสารอ้างอิงหมายเลข [91,92] ซึ่งในท้ายบทความให้รายละเอียดเอกสารอ้างอิงทั้งสองไว้ดังนี้

[91] J.B. Peri, J. Phys. Chem., 69 (1956) 211.
[92] P. Fink and J. Datka, J. Chem. Soc., Faraday Trans. I, 85 (1989) 309.

ด้วยความสนใจ ผมก็เลยลองตามไปค้นเอกสารทั้งสองฉบับดู อย่างแรกที่พบก็คือเขาให้ข้อมูลเอกสารผิด คือเอกสารหมายเลข [91] นั้นที่ถูกต้องต้องเป็นปีค.ศ. 1965 (ไม่ใช่ 1956) ดังแสดงในรูปที่ ๓ และเอกสารหมายเลข [92] นั้นที่ถูกต้องก็คืออยู่ที่หน้า 3079 ไม่ใช่หน้า 309 ดังแสดงในรูปที่ ๔

รูปที่ ๓ บทความของ Peri ที่ตีพิมพ์ในปีค.ศ. ๑๙๖๕ (ref. 91 ในบทความของ Lercher และคณะ)

ประเด็นพิมพ์ผิดตก ๆ หล่น ๆ นั่นเรื่องหนึ่ง โดยเฉพาะส่วนที่เป็นตัวเลข เพราะโปรแกรมมันตรวจสอบไม่ได้ว่าพิมพ์ถูกหรือผิด ไม่เหมือนกับส่วนที่เป็นข้อความ ที่โปรแกรมมันสามารถตรวจสอบได้ แต่เฉพาะประโยคแรกนี้มันมีเรื่องที่ผมเห็นว่าสำคัญอยู่สองเรื่องด้วยกัน
 
เรื่องแรกก็คือบทความของ Peri นั้นเป็นการศึกษาการดูดกลืนรังสีอินฟราเรดของหมู่ -OH บนพื้นผิว γ-Al2O3 ที่ผ่านการกำจัดหมู่ -OH ด้วยการให้ความร้อน และทำการสร้างหมู่ -OH กลับคืนใหม่ด้วยการ rehydration (เติมน้ำคืน) โดย "ไม่มี" การศึกษาการดูดซับ NH3 บนพื้นผิว ซึ่งตรงนี้มันไม่ตรงกับข้อความในประโยคแรกในรูปที่ ๒ ซึ่งมันทำให้ผู้อ่านเข้าใจว่าบทความของ Peri นั้นมีการศึกษาการดูดซับ NH3 และพบการแตกตัวของโมเลกุล NH3  
  
เรื่องที่สองก็คือบทความของ Fink และ Datka ที่ทำการศึกษาการดูดซับ NH3 บนพื้นผิว ZSM-5 ซีโอไลต์ (รูปที่ ๔) และพบการเข้าไปแทนที่หมู่ -OH ของโครงสร้าง S-OH โดย NH3 กลายเป็นหมู่ S-NH2 และยังพบการแตกตัวของ -NH2 ไปเป็น -NH- ด้วยดังที่ข้อความในประโยคแรกในรูปที่ ๒ กล่าวไว้ แต่ข้อความนี้มันก็มีอะไรที่ไม่ถูกต้องและไม่สมบูรณ์อยู่ กล่าวคือ
 
(ก) การทดลองของ Fink และ Datka นั้นศึกษาในช่วงอุณหภูมิตั้งแต่ 673 K ขึ้นไป และพบการแตกตัวของหมู่ -NH2 ไปเป็น -NH- ที่อุณหภูมิสูงเกินกว่า 723 K (หรือ 500ºC) ไม่ใช่ 500 K ดังที่บทความของ Lercher และคณะอ้างถึง กล่าวคือการแทนที่หมู่ -OH ด้วย -NH2 นั้นเกิดได้ที่อุณหภูมิต่ำกว่า 723 K แต่ในงานนี้เริ่มศึกษาที่อุณหภูมิตั้งแต่ 673 K ขึ้นไป ดังนั้นมันควรต้องแยกระหว่างอุณหภูมิที่ NH3 สามารถแทนที่หมู่ -OH แล้วกลายเป็นหมู่ -NH2 ได้ กับอุณหภูมิที่ทำให้หมู่ -NH2 แตกตัวเป็นหมู่ -NH- ได้ ที่เกิดที่อุณหภูมิที่สูงกว่าปฏิกิริยาแทนที่
 
(ข) การแทนที่ดังกล่าวจะเกิดได้ก็ต่อเมื่อแก๊ส NH3 ที่ใช้นั้น "แห้ง" มาก ๆ (คือไม่มีน้ำปน) เพราะน้ำจะทำให้เกิดปฏิกิริยาผันกลับกลายเป็นหมู่ -OH เหมือนเดิม และต้องทำการกำจัดน้ำออกจากระบบตลอดเวลาที่ทำการวัด
 
รายละเอียดการกำจัดน้ำออกจากแก๊ส NH3 ที่ใช้ในการทดลองนั้นทำอย่างไร อ่านได้ในรูปที่ ๕ ครับ วิธีการที่เขาใช้นั้นแสดงให้เห็นว่าปฏิกิริยาการแทนที่หมู่ -OH ด้วย NH3 นั้นไวต่อการปนเปื้อนของน้ำอย่างไร

รูปที่ ๔ บทความของ Fink และ Datka (ref. 92 ในบทความของ Lercher และคณะ)

รูปที่ ๕ รายละเอียดวิธีการทดลองในบทความของ Fink และ Datka ในกรอบสี่เหลี่ยมสีแดงคือรายละเอียดการกำจัดน้ำออกจากแก๊ส NH3 ก่อนนำไปใช้ในการทดลอง

รูปที่ ๖ ข้อสรุปที่บทความของ Fink และ Datka รายงานไว้ ตรงนี้ขออธิบายเพิ่มเติมนิดนึง คือในกรณีของหมู่ Si-OH นั้นอะตอม O จะยึดเกาะกับอะตอม Si ตัวเดียวด้วยพันธะโควาเลนซ์ แต่ในกรณีของหมู่ bridge Si-OH···Al นั้นหมายถึงอะตอม O เกาะกับอะตอม Si ด้วยพันธะโควาเลนซ์ แต่ถูกไอออน Al3+ ที่อยู่ใกล้ ๆ นั้นดึงอิเล็กตรอนเข้าหาด้วย ด้วยเหตุนี้จึงทำให้โครงสร้าง Si-OH···Al มีฤทธิ์เป็นกรดที่แรงกว่าโครงสร้าง Si-OH เพราะไอออน Al3+ ช่วยดึงเอาประจุลบออกจากอะตอม O เมื่อมันสูญเสีย H+ ออกไป ทำให้ความเป็นลบที่อะตอม O ของโครงสร้างแบบ bridge นั้นลดต่ำลง ความสามารถในการดึงเอา H+ กลับจึงลดลงตามไปด้วย มันก็เลยเป็นกรดที่แรงขึ้น

จะเห็นว่าดูเผิน ๆ สิ่งที่เขาอ้างอิงมาก็ดูดี แต่พอไปตามดูเอกสารต้นฉบับที่เขาอ้างอิงมากลับพบว่าเป็นคนละเรื่องเลย ซึ่งเรื่องนี้ยังไม่จบนะครับ ยังมีต่ออีกในประโยคที่สองของข้อความในรูปที่ ๒ ที่กล่าวว่ามีการพบว่าในกรณีของโลหะออกไซด์ TiO2, MoO3 และ WO3 อาจมีการทำปฏิกิริยาเกิดเป็นสารประกอบไนไตรด์ (nitride) ได้ โดยมีการอ้างอิงไปยังเอกสารหมายเลข [93] ซึ่งก็คือ

[93] L. Volpe and M. Boudart, J. Solid State Chem., 59 (1985) 332.

ผมลองตามไปค้นต้นฉบับเอกสารอ้างอิง [93] ดังกล่าวและได้นำส่วนบทคัดย่อมาแสดงไว้ในรูปที่ ๗ พึงสังเกตนะครับว่าในชื่อบทความและบทคัดย่อนั้นไม่ได้มีการกล่าวถึง TiO2 เลย และในความเป็นจริงบทความนี้ไม่เกี่ยวข้องกับ TiO2 เลย

รูปที่ ๗ บทความของ Volpe และ Boudart ที่ศึกษากรณีของสารประกอบออกไซด์ของโลหะ Mo และ W

เอกสารอ้างอิง [93] นี้ศึกษาการเตรียมสารประกอบไนไตรด์ของ Mo และ W จากสารประกอบ MoO3 และ WO3 ด้วยการผ่านแก๊ส NH3 ที่ความดันบรรยากาศให้ไหลอย่างต่อเนื่องผ่านเบดสารประกอบออกไซด์และเพิ่มอุณหภูมิขึ้นเรื่อย ๆ โดยบทความได้รายงานว่าเริ่มพบการเกิดสารประกอบไนไตรด์ที่อุณหภูมิประมาณ 630 K (ประมาณ 360ºC) สำหรับ MoO3 และประมาณ 700 K (ประมาณ 430ºC) สำหรับ WO3 ดังเห็นได้จากสีของตัวอย่างที่เข้มขึ้น
 
แต่ในการทำ temperature programmed desorption ของ NH3 นั้น เราไม่ได้ให้แก๊ส NH3 ไหลผ่านอย่างต่อเนื่อง จะมีเพียงแต่โมเลกุล NH3 ที่คายซับออกจากตัวอย่างที่อยู่ทางด้านต้นทางนั้นที่จะไหลผ่านเบด ซึ่งถ้าว่ากันตามนี้ก็เรียกว่ายังอาจมีโอกาสที่จะโมเลกุล NH3 ดังกล่าวทำให้สารประกอบออกไซด์ของโลหะทั้งสองเปลี่ยนไปเป็นไนไตรด์ได้

๒๐ กว่าปีที่แล้วเป็นยุคที่อินเทอร์เน็ตเพิ่งจะเริ่มแพร่หลาย ข้อมูลต่าง ๆ เกือบทั้งหมดยังอยู่กับบนกระดาษ การสืบค้นเอกสารต้นตอที่มีการกล่าวถึงทำได้ยาก เว้นแต่จะสามารถเข้าถึงห้องสมุดขนาดใหญ่ที่มีกำลังซื้อมากพอที่จะจ่ายค่าวารสารต่าง ๆ ได้ ดังนั้นสิ่งที่เกิดขึ้นก็คือเมื่อมีการอ้างอิงไปยังเอกสารฉบับอื่น จึงยากที่ผู้อ่านจะสามารถตรวจสอบได้ว่าเอกสารที่ถูกกล่าวถึงนั้นมันมีความเกี่ยวข้องกับสิ่งที่มันถูกอ้างอิงหรือไม่
 
สภาพปัจจุบันนี้แตกต่างไปจากเมื่อ ๒๐ กว่าปีที่แล้วมาก การตรวจสอบทำได้ง่ายขึ้น แต่ก็ใช่ว่าจะไม่มีการลักไก่ทำกัน เพราะตัวผมเองก็เคยเจอตอนที่หน่วยงานหนึ่งส่งรายงานการวิจัยมาให้ช่วยพิจารณา พอตรวจสอบก็พบว่ามีการอ้างอิงไปยังเอกสารที่เมื่อตรวจในเนื้อหาแล้วไม่ตรงกับที่รายงานนั้นอ้างถึง เรียกว่าการมั่วและการลักไก่ก็ยังมีอยู่ เพียงแต่ว่าเรามีเวลาและทรัพยากรมากพอที่จะตรวจสอบได้หรือไม่เท่านั้นเอง

วันพุธที่ 24 เมษายน พ.ศ. 2562

การวิเคราะห์ความเป็นกรดบนพื้นผิวของแข็ง ด้วยเทคนิคการดูดซับ Probe molecule (๔) MO Memoir : Wednesday 24 April 2562

"Probe molecule ที่ดีที่สุดก็คือตัวโมเลกุลสารตั้งต้นเอง" น่าจะเป็นข้อสรุปที่ดีสำหรับเกณฑ์ข้อที่สี่ของ Lercher และคณะที่กล่าวไว้ "ขนาดของ Probe molecule ที่จะใช้วัดความหนาแน่นของตำแหน่งที่เป็นกรดควรที่จะมีขนาดประมาณเทียบเคียงกับขนาดของสารตั้งต้นของปฏิกิริยาที่ศึกษา" ("ความหนาแน่น" นี้คือบนพื้นผิวของแข็งนะ) 
  
ปฏิกิริยาที่เกิดบนตัวเร่งปฏิกิริยาวิวิธพันธ์นั้นจะเกิดขึ้นในรูพรุนของตัวเร่งปฏิกิริยา ซึ่งรูพรุนนี้มีทั้งขนาดเล็กและขนาดใหญ่ ปฏิกิริยาจะเกิดขึ้นได้ก็ต่อเมื่อสารตั้งต้นสามารถลงไปเกาะยังตำแหน่งที่ว่องไว (เช่นตำแหน่งที่เป็นกรดในกรณีของปฏิกิริยาที่ต้องการกรดในการเร่งปฏิกิริยา) ตำแหน่งที่เป็นกรดนี้มีอยู่ทั้งบนพื้นผิวของรูพรุนขนาดเล็กและรูพรุนขนาดใหญ่ แต่ตำแหน่งที่เป็นกรดที่สามารถเร่งปฏิกิริยาได้จะต้องเป็นตำแหน่งที่โมเลกุลสารตั้งต้นเข้าถึงได้ ถ้าสารตั้งต้นมีขนาดโมเลกุลเล็ก มันก็สามารถแพร่เข้าไปถึงตำแหน่งที่เป็นกรดที่อยู่ในรูพรุนชนาดเล็กได้ แต่ถ้าสารตั้งต้นมีขนาดโมเลกุลใหญ่ มันจะไม่สามารถใช้ประโยชน์จากตำแหน่งที่เป็นกรดที่อยู่ในรูพรุนขนาดเล็กได้
 
คาร์บอนมอนอกไซด์หรือ CO (kinetic parameter = 0.073 nm) และแอมโมเนียหรือ NH3 (kinetic parameter = 0.073 nm) เป็นโมเลกุลที่มีขนาดเล็กที่สามารถเข้าไปถึงตำแหน่งที่เป็นกรดที่อยู่ในรูพรุนขนาดเล็กได้ โดยเฉพาะ NH3 มักจะถูกใช้เพื่อการวัดปริมาณตำแหน่งที่เป็นกรดทั้งหมดบนพื้นผิว แต่ถ้าสารตั้งต้นของปฏิกิริยาที่สนใจนั้นมีขนาดโมเลกุลใหญ่จนไม่สามารถแพร่เข้าไปในรูพรุนขนาดเล็กได้ จะมีเฉพาะตำแหน่งที่เป็นกรดที่อยู่ในรูพรุนขนาดใหญ่เท่านั้นที่มีบทบาทในการทำให้เกิดปฏิกิริยา (พวกที่อยู่ในรูพรุนขนาดเล็กไม่มีประโยชน์ใด ๆ เพราะสารตั้งต้นแพร่เข้าไปไม่ถึง) ดังนั้นในกรณี


รูปที่ ๑ สารพวก substituted pyridine หรือไพริดีนที่มีหมู่แทนที่ตรงตำแหน่งอะตอม C ที่อยู่ด้านข้างอะตอม N เช่น 2,6-Dimethylpyridine และ 2,6-Di-t-butylpyridine ไม่เพียงแต่จะมีประโยชน์ในการวัดปริมาณตำแหน่งกรด Brönsted แต่ยังมีประโยชน์ในการวัดตำแหน่งที่เป็นกรดในรูพรุนขนาดใหญ่ที่สารตั้งต้นที่มีขนาดโมเลกุลใหญ่สามารถเข้าถึงได้

ก่อนที่เราจะไปคุยกันเรื่องนี้อยากให้ลองพิจารณาสเปกตรัมการดูดกลืนรังสีอินฟราเรดของ 2,6-dimethylpyridine บนพื้นผิว γ-Al2O3 ที่ผ่านการให้ความร้อนที่อุณหภูมิ 400ºC (รูปที่ ๒) และ 500ºC (รูปที่ ๓) ในสุญญากาส ก่อนทำการดูดซับดูก่อนนะครับ สิ่งที่อยากให้ดูก็คือผลของอุณหภูมิที่ใช้ในการเตรียมตัวอย่างก่อนทำการวัด แนวเส้นประสีแดงในรูปที่ ๓ นั้นคือแนวเส้น base line ที่มันไต่ขึ้นสูงเรื่อย ๆ ในช่วงเลขคลื่นสูง ลักษณะเช่นนี้เกิดจากการที่อนุภาคตัวอย่างนั้นมีขนาดใหญ่เกินกว่าความยาวคลื่นแสง ทำให้รังสีที่ตกกระทบนั้นมีการสะท้อนออกไปส่วนหนึ่ง จึงทำให้เห็นค่า absorbance ช่วงเลขคลื่นสูงมีค่าสูงขึ้น แต่นั่นเป็นเพราะรังสีช่วงนี้ถูกสะท้อนออกไป ไม่ได้หายไปเพราะถูกดูดกลืน

รูปที่ ๒ สเปกตรัมการดูดกลืนรังสีอินฟราเรดของ 2,6-dimethylpyridine บนพื้นผิว γ-Al2O3 ที่ผ่านการให้ความร้อนที่อุณหภูมิ 400ºC ในสุญญากาศก่อนทำการดูดซับ เส้นประ a คือเส้นก่อนจะมีการดูดซับ 2,6-dimethylpyridine

รูปที่ ๓ สเปกตรัมการดูดกลืนรังสีอินฟราเรดของ 2,6-dimethylpyridine บนพื้นผิว γ-Al2O3 ที่ผ่านการให้ความร้อนที่อุณหภูมิ 500ºC ในสุญญากาศก่อนทำการดูดซับ เส้นประ a คือเส้นก่อนจะมีการดูดซับ 2,6-dimethylpyridine เช่นกัน พึงสังเกตความแตกต่างระหว่างเส้น a ในรูปที่ ๒ และ ๓
 
เคยมีคนมาถามผมเกี่ยวกับการวัดการดูดกลืนรังสีอินฟราเรดของไพริดีนเพื่อวัดปริมาณตำแหน่งกรด Brönsted และ Lewis บนพื้นผิวของแข็ง เพื่อที่จะดูว่าตำแหน่งกรดแบบไหนสำคัญต่อการเกิดปฏิกิริยา (เขาคงมาถามในฐานะที่เขาคงรู้ว่าผมเคยลงมือทำการทดลองนี้ด้วยตัวเอง ตั้งแต่การเตรียมแผ่น wafer การป้อนไพริดีนให้ตัวอย่างดูดซับ ไปจนถึงการเก็บสเปกตรัมการดูดกลืน) ซึ่งผมก็ตอบเขาไปว่า "อยากให้ผลออกมาแบบไหนล่ะ จัดให้ได้
  
เพราะจากประสบการณ์ที่เคยลองถูกลองผิดในช่วงแรกมันทำให้รู้ว่า ธรรมชาติของตัวอย่าง (คือจับความชื้นได้ดีแค่ไหน) ประสบการณ์ของตัวอย่าง (กล่าวคือสัมผัสอากาศที่มีความชื้นสูงแค่ไหนมานานขนาดไหนก่อนนำมาวัด) และการเตรียมตัวอย่างก่อนให้ดูดซับ probe molecule (ระยะเวลาและอุณหภูมิที่ใช้ในขั้นขั้นตอนการทำสุญญากาศและให้ความร้อนเพื่อกำจัดแก๊สต่าง ๆ ที่อยู่ในรูพรุนและที่พื้นผิวดูดซับเอาไว้) มันส่งผลต่อตำแหน่งกรด Brönsted ที่จะวัดได้ การทำใช้อุณหภูมิสูงทำให้หมู่ -OH หายไปจากพื้นผิวมากกว่าการใช้อุณหภูมิที่ต่ำกว่า และนั่นอาจหมายถึงการมีตำแหน่งกรด Lewis ปรากฏเพิ่มมากขึ้น (-OH สองหมู่หลอมรวมกันกลายเป็นโมเลกุลน้ำหลุดออกไป ไอออนบวกที่เดิมมีหมู่ -OH เกาะอยู่ก็เลยเปิดออก)
 
ผลการวัดในรูปที่ ๒ และ ๓ นั้นนำมาจากบทความในรูปที่ ๔ ข้างล่างที่ให้คำอธิบายไว้ว่าการเพิ่มอุณหภูมิการเตรียมตัวอย่างจาก 400ºC เป็น 500ºC (ทำในสุญญากาศ) ทำให้หมู่ -OH บนพื้นผิวมีการจัดโครงสร้างใหม่ โดย γ-Al2O3 ที่ผ่านการความร้อนที่ 500ºC มีปริมาณตำแหน่งกรด Brönsted ที่มีความแรงสูงมากกว่า และมีตำแหน่งกรด Brönsted ที่มีความแรงต่ำน้อยกว่าเมื่อเทียบกับ γ-Al2O3 ที่ผ่านการความร้อนที่ 400ºC จากประสบการณ์ที่เคยมี ปรากฏการณ์นี้จะเด่นชัดสำหรับพื้นผิวของแข็งที่มีปริมาณ -OH สูง

รูปที่ ๔ บทความที่เป็นต้นเรื่องของรูปที่ ๒ และ ๓

เทคนิคดั้งเดิมที่ใช้ปฏิกิริยาทดสอบเพื่อหาว่ากรดบนพื้นผิวตัวเร่งปฏิกิริยานั้นมีความแรงสูงถึงระดับไหน แม้ว่าจะเป็นวิธีการที่วุ่นวายและไม่ให้สเกลความแตกต่างที่เด่นชัด เช่นตัวเร่งปฏิกิริยา A และ B สามารถทำให้เกิดปฏิกิริยา alcohol dehydration ได้ แต่ B สามารถทำให้เกิดปฏิกิริยา alkylation of aromatics ก็แสดงว่า B เป็นกรดที่แรงกว่า A ในทำนองเดียวกันถ้า C สามารถทำให้เกิดปฏิกิริยา paraffin cracking ได้แต่ B ทำไม่ได้ ก็แสดงว่า C เป็นกรดที่แรงกว่า B แต่มันก็ไม่ได้บอกว่าความแตกต่างระหว่าง A กับ B และ B กับ C นั้นแตกต่างกันมากแค่ไหน แต่วิธีนี้ก็มีข้อดีคือด้วยการเลือกโมเลกุลสารตั้งต้นที่มีขนาดใกล้เคียงกับสารตั้งต้นในปฏิกิริยาที่เราสนใจ มันจะบ่งบอกถึงตำแหน่งกรดที่สารตั้งต้นในปฏิกิริยาที่เราสนใจนั้นสามารถแพร่เข้าถึงได้ 
  
(หมายเหตุ : ตัวอย่างปฏิกิริยาทดสอบที่ต้องการกรดที่มีความแรงจากต่ำไปสูงได้แก่ Dehydration of alcohols < Cis-trans isomerisation of olefins < Double-bond migration < Alkylation of aromatics < Isomerisation of alkylaromatics < Transalkylation of alkylaromatics < Cracking of alkylaromatics < Skeletal isomerisation < Cracking of paraffins จาก Satterfield,C.N.,"Heterogeneous catalysis in industrial practice", 2nd Ed.,McGraw Hill, 1991)

รูปที่ ๕ บทความที่วัดความเป็นกรดบนพื้นผิวด้วยการใช้ probe molecule ที่มีขนาดแตกต่างกัน โดยพบว่าในกรณีของปฏิกิริยา catalytic cracking สารตั้งต้นที่มีขนาดใหญ่เช่น 1,3,5-Triisopropylbenzene ปริมาณกรดที่วัดด้วย probe molecule ที่มีขนาดใหญ่คือ 2,6-Di-t-butylpyridine จะสอดคล้องกับความว่องไวในการเกิดปฏิกิริยาที่วัดได้

บทความในรูปที่ ๕ เป็นตัวอย่างหนึ่งของการใช้ probe molecule ที่มีขนาดต่าง ๆ กันในการวัดปริมาณตำแหน่งกรดบนพื้นผิว โดยพบว่า probe molecule ที่มีขนาดใหญ่จะวัดได้เฉพาะตำแหน่งกรดที่อยู่บริเวณผิวนอกและเป็นตำแหน่งที่โมเลกุลสารตั้งต้นขนาดใหญ่สามารถใช้ประโยชน์ในการทำปฏิกิริยาได้

กล่าวโดยสรุปก็คือ การมีตำแหน่งที่เป็นกรดที่มีความแรงที่เหมาะสมสำหรับปฏิกิริยาที่ต้องการในปริมาณมากนั้น ไม่ได้ทำให้ตัวเร่งปฏิกิริยานั้นเป็นตัวเร่งปฏิกิริยาที่ดีเสมอไป เพราะมันต้องอยู่ในตำแหน่งที่โมเลกุลสารตั้งต้นนั้นสามารถเข้าถึงได้ด้วย ดังนั้นการแปลผลความสัมพันธ์ระหว่าง ปริมาณ-ความแรงของตำแหน่งที่เป็นกรด (ที่วัดได้ด้วยการใช้ probe molecule ขนาดเล็ก) กับอัตราการเกิดปฏิกิริยา จึงอาจไม่ให้ภาพที่ถูกต้องเสมอไปถ้าหากโมเลกุลสารตั้งต้นมีขนาดใหญ่ การนำเอาผลการกระจายขนาดรูพรุนและรูพรุนเฉลี่ยมาพิจารณาประกอบจึงอาจให้ภาพที่ถูกต้องมากกว่า

วันพฤหัสบดีที่ 26 เมษายน พ.ศ. 2561

การจำแนกตำแหน่งที่เป็นเบส Brönsted และ Lewis บนพื้นผิวของแข็งด้วยเทคนิค Infrared spectroscopy และ Adsorbed probe molecules MO Memoir : Thursday 26 April 2561

เนื้อหาในบันทึกฉบับนี้อิงมาจากบทความเรื่อง "Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules" โดย J.C. Lavalley ตีพิมพ์ในวารสาร Catalysis Today vol. 27 ปีค.ศ. 1996 หน้า 377-401 โดยได้คัดมาเพียงแค่บางประเด็นเท่านั้น

ความเป็นเบสตามนิยามของ Lewis นั้นคือสารที่ให้คู่อิเล็กตรอน ถ้าว่ากันตามนี้ก็คือไอออนลบนั่นเอง และในกรณีของสารประกอบโลหะออกไซด์ ไอออนลบดังกล่าวก็ได้แก่ O2- (ถ้าเป็นซัลไฟด์ก็จะเป็น S2-)
 
ตามนิยามของ Arrhenius นั้น เบสคือสารที่แตกตัวในน้ำแล้วให้ไอออนไฮดรอกไซด์ (hydroxide OH-) และไอออนนี้ก็ถือว่าเป็นเบสตามนิยามของ Brönsted ด้วยเพราะมันสามารถรับโปรตอนได้
 
หมู่ไฮดรอกซิล (hydroxyl -OH) แตกต่างจากไอออนไฮดรอกไซด์อยู่ตรงที่ เรามองพันธะระหว่างอะตอม O กับอะตอมโลหะอีกตัวหนึ่งว่าเป็นอย่างไร ถ้าเรามองว่าอะตอมโลหะนั้นสูญเสียอิเล็กตรอนไปให้อะตอม O (แบบไปแล้วไปลับ) พันธะระหว่างอะตอมโลหะและอะตอม O ก็จะเป็นพันธะไอออนิก หมู่ไฮดรอกซิลก็จะกลายเป็นหมู่ไฮดรอกไซด์ แต่ในกรณีที่ผลต่างระหว่างค่าอิเล็กโทรเนกาทิวิตี (electronegativity) ระหว่างอะตอมโลหะและอะตอม O นั้นไม่สูงมาก เราก็สามารถมองได้ว่าพันธะระหว่างอะตอมโลหะและอะตอม O นั้นเป็นพันธะผสมระหว่างพันธะไอออนิกและพันธะโควาเลนซ์ ส่วนที่ว่าจะมีสัดส่วนความเป็นไอออนิก (Percentage ionic character) มากน้อยแค่ไหนนั้นก็ขึ้นอยู่กับผลต่างของค่าอิเล็กโทรเนกาทิวิตี ถ้าค่าผลต่างดังกล่าวมากเราก็สามารถมองได้ว่าอิเล็กตรอนของโลหะนั้นยกให้อะตอม O ไปเลย ทำให้หมู่ไฮดรอกซิลกลายเป็นไอออนไฮดรอกไซด์ แต่ถ้าผลต่างมีค่าไม่มากก็สามารถมองได้ว่าอิเล็กตรอนของอะตอมโลหะนั้นใช้เวลาส่วนใหญ่ไปอยู่ที่อะตอม O มากกว่าที่ตัวอะตอมโลหะเอง ซึ่งในกรณีหลังนี้อาจต้องมองอะตอม O ของหมู่ไฮดรอกซิลนั้นเป็นเบส Lewis
 
ในขณะเดียวกันหมู่ไฮดรอกซิลเองยังแสดงฤทธิ์เป็นกรด Brönsted ได้ด้วย ด้วยการที่มันจ่าย H+ ออกไปและทิ้งประจุลบเอาไว้ที่อะตอม O ความเป็นกรดของหมู่ไฮดรอกซิลนี้จะแรงขึ้นถ้าหากไอออนบวกที่เกาะกับอะตอม O อยู่นั้นสามารถสะเทินอิเล็กตรอนส่วนเกินที่เกิดขึ้นนี้ได้ด้วยการดึงเอาอิเล็กตรอนส่วนเกินตัวนี้ออกไป ไอออนบวกที่มีความหนาแน่นประจุสูง (คือเป็นไอออนขนาดเล็กและ/หรือมีประจุบวกมาก) จะทำหน้าที่ดึงอิเล็กตรอนออกได้ดี


รูปที่ ๑ แบบจำลองโครงสร้างของหมู่ -OH บนพื้นผิวของแข็ง
 
Lavalley ได้ยกตัวอย่างโครงสร้างหมู่ -OH บนพื้นผิวสารประกอบโลหะออกไซด์ (เช่น alumina แล chromia) ดังแสดงในรูปที่ ๑ ในกรณีของ Type I ที่หมู่ -OH มีไอออนโลหะ M อยู่เคียงข้างเพียงไอออนเดียว ความเป็นเบสของหมู่ -OH จะมากที่สุด แต่เมื่ออะตอม O ของหมู่ -OH มีไอออนโลหะ M อยู่เคียงข้างมากขึ้น (มี coordination number สูงขึ้นดังเช่นกรณีของ Type II และ Type III) ความเป็นเบสของหมู่ -OH จะลดลงในขณะที่ความเป็นกรด Brönsted จะโดดเด่นขึ้นแทน เพราะไอออนโลหะ M (ที่มีประจุบวกนั้น) จะช่วยดึงอิเล็กตรอนส่วนเกินที่อะตอม O ออกเมื่ออะตอม O ดังกล่าวจ่าย H+ ออกไป ทำให้ O- ที่เกิดขึ้นนั้นมีเสถียรภาพมากขึ้น
 
Lavalley ยังได้กล่าวไว้ว่าการเปลี่ยนแปลงความแรงของความเป็นเบสดังกล่าวเห็นได้จากการให้ตัวอย่างดูดซับแก๊สคาร์บอนมอนอกไซด์ (carbon monoxide CO) ที่อุณหภูมิต่ำ ที่พบว่าในกรณีโครงสร้างหมู่ -OH แบบ Type I นั้น เลขคลื่นการสั่น (ที่วัดด้วยเทคนิค infrared spectroscopy) ไม่ได้รับผลกระทบจาก CO ในขณะที่รูปแบบ Type II และ Type III นั้นตรวจพบการเกิดพันธะไฮโดรเจน -OH --- CO ระหว่างอะตอม H ของหมู่ไฮดรอกซิลกับอะตอม C ของโมเลกุล CO ส่วนในกรณีของโครงสร้างแบบ Type I นั้นก็มีรายงานว่าสามารถเกิดเป็นฟอร์เมต (formate) กับ CO (รูปที่ ๒)


รูปที่ ๒ การเกิดฟอร์เมต (formate) สปีชีย์เมื่ออะตอม O ของหมู่ -OH แสดงคุณสมบัติ nucleophilic

(โมเลกุล CO นั้นด้านอะตอม C จะมีความเป็นขั้วบวกในขณะที่ด้านอะตอม O จะมีความเป็นขั้วลบ ดังนั้นด้านอะตอม C จะมีคุณสมบัติเป็น electrophilic คือมองหาตำแหน่งที่มีอิเล็กตรอนมากเช่นอะตอม O ของหมู่ -OH ส่วนด้านอะตอม O นั้นจะมีคุณสมบัติที่เป็น nucleophilic คือมองหาตำแหน่งที่มีความเป็นบวกเช่นอะตอม H ของหมู่ -OH ในกรณีของหมู่ -OH ชนิด Type II และ Type III นั้น เราอาจมองได้ว่าอะตอม O ของหมู่ -OH นั้นถูกไอออน M ของโลหะที่มีอยู่หลายไอออนดึงเอาอิเล็กตรอนออกไป ทำให้ความหนาแน่นอิเล็กตรอนที่อะตอม O ลดลง แต่ผลการดึงดังกล่าวทำให้อะตอม H นั้นมีความเป็นบวกมากขึ้นจนทำให้สามารถสร้างพันธะไฮโดรเจนกับอะตอม O ของ CO ได้ ส่วนในกรณีของ Type I นั้นยิ่งถ้าไอออน M มีความหนาแน่นประจุต่ำและมีค่าอิเล็กโทรเนกาทิวิตีที่ต่ำด้วยแล้ว จะทำให้อะตอม O ของหมู่ -OH มีความหนาแน่นอิเล็กตรอนที่สูง อะตอม C ของ CO จึงหันเข้ามากับกับอะตอม O ของหมู่ -OH)


รูปที่ ๓ การยึดเกาะของโมเลกุล CO กับไอออน O2- ที่เป็นเบส Lewis ที่นำไปสู่การเกิดเป็นไอออนคาร์บอไนท์ (carbonite CO22-
  
โมเลกุล CO ในเฟสแก๊สนั้นยังสามารถเกิดการดูดซับที่ไอออนบวก (cation) หรือตำแหน่งที่เป็นกรด Lewis โดยการดูดซับที่ตำแหน่งดังกล่าวจะทำให้เลขคลื่นการสั่นของโมเลกุล CO ในเฟสแก๊สที่เดิมอยู่ที่ 2143 cm-1 ย้ายไปยังเลขคลื่นที่สูงขึ้นตามความแรงของตำแหน่งกรด Lewis นั้น แต่ที่อุณหภูมิต่ำ (100 K) ตัวโมเลุกล CO เองก็สามารถเกิดการดูดซับกับไอออน O2- ที่เป็นเบส Lewis เกิดเป็นไอออนคาร์บอไนท์ (carbonite CO22-) ได้ดังแสดงในรูปที่ ๓
 
คาร์บอนไดออกไซด์ (carbon dioxide CO2) เป็นแก๊สที่นิยมใช้กันมากกว่าในการวัดความเป็นเบสของพื้นผิวด้วยการที่มันมีความเป็นกรด โดยเฉพาะอย่างยิ่งในกรณีของหมู่ -OH ชนิด Type I ที่ 1 หมู่จะจับกับโมเลกุล CO2 1 โมเลกุลเกิดเป็นสปีชีย์ไฮโดรเจนคาร์บอนเนต (hydrogen carbonate) ดังแสดงในรูปที่ ๔


รูปที่ ๔ การดูดซับโมเลกุล CO2 ณ ตำแหน่งหมู่ไฮดรอกซิล -OH เกิดเป็นสปีชีย์ไฮโดรเจนคาร์บอนเนต (hydrogen carbonate)

ส่วนในกรณีของ O2- ที่เป็นเบส Lewis นั้นจากการศึกษาทางด้าน infrared spectroscopy พบว่าโมเลกุล CO2 มีการเกาะได้หลายรูปแบบ (รูปที่ ๕) โดยอะตอม C นั้นจะเข้าไปยึดเกาะกับ O2- ในขณะที่อะตอม O อีก 2 อะตอมของโมเลกุล CO2 อาจอยู่อย่างอิสระหรือหนึ่งในนั้นมีการยึดเกาะกับไอออนบวก M ที่อยู่เคียงข้าง (และสามารถเข้าถึงได้)


รูปที่ ๕ รูปแบบต่าง ๆ ของการเกาะของโมเลกุล CO2 บนตำแหน่ง O2- ที่เป็นเบส Lewis
 
Pyrrole เป็นโมเลกุลสารอินทรีย์ตัวหนึ่งที่สามารถนำมาใช้วัดความเป็นเบสบนพื้นผิวโลหะออกไซด์ได้โดยทำหน้าที่เป็นสารที่จ่ายโปรตอน ดังกรณีของ O2- ที่แสดงในรูปที่ ๖ ข้างล่าง ถ้าหาก O2- มีความเป็นเบสที่ไม่แรง โมเลกุล pyrrole ก็ทำได้เพียงแค่การสร้างพันธะไฮโดรเจนยึดเกาะกับ O2- นั้น (ที่อาจกำจัดได้ด้วยการทำสุญญากาศ) แต่ถ้า O2- มีความเป็นเบสที่แรง อะตอม N ของโมเลกุล pyrrole ก็อาจจ่ายโปรตอนให้กับ O2- แล้วกลายเป็น pyrrolate ion (ที่อาจต้องไล่ออกจากพื้นผิวด้วยการให้ความร้อน)


รูปที่ ๖ รูปแบบการยึดเกาะของโมเลกุล pyrroloe เข้ากับ O2-

รูปที่ ๗ และ ๘ เป็น IR spectra ที่นำมาจากรูปที่ ๕.๔ และ ๕.๗ ในวิทยานิพนธ์ปริญญาวิศวกรรมศาสตร์มหาบัณฑิต วิศวกรรมเคมี จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา ๒๕๔๓ เรื่อง "การศึกษาการวัดความเป็นเบสของพื้นผิวตัวเร่งปฏิกิริยาด้วยการดูดซับโมเลกุลโพรบ" ของนางสาวจีราพร จันทรศร โดยเป็นการศึกษาการใช้ pyrrole วัดความเป็นเบสของพื้นผิว ในการทดลองนี้ได้ให้ MgO ดูดซับโมเลกุล pyrrole เอาไว้ก่อน จากนั้นจึงใช้การทำสุญญากาศเพื่อกำจัดโมเลกุล pyrrole ที่ไม่สามารถสร้างพันธะที่แข็งแรงยึดเกาะพื้นผิวเอาไว้ได้ (รูปที่ ๗) ส่วนรูปที่ ๘ เป็นการทดลองต่อจากรูปที่ ๗ กล่าวคือหลังจากทำสุญญากาศจนพบว่าพีคของ pyrrole นั้นลดต่ำลงจนคงที่แล้ว ก็ทำการเพิ่มอุณหภูมิตัวอย่างเป็นขั้น ๆ และทำการวัดปริมาณ pyrrole ที่หลงเหลืออยู่บนพื้นผิว จะเห็นว่าพอเพิ่มอุณหภูมิไปได้แค่ 100ºC ก็ไม่สามารถตรวจพบ pyrrole บนพื้นผิวแล้ว

รูปที่ ๗ IR spectra การดูดซับ pyrrole บนพื้นผิว MgO หลังจากที่ให้พื้นผิวดูดซับ pyrrole จนอิ่มตัวและทำสุญญากาศที่อุณหภูมิห้องเพื่อกำจัดโมเลกุล pyrrole ส่วนเกินออก (ตำแหน่งเลขคลื่น 1016 cm-1)


รูปที่ ๘ IR spectra การดูดซับ pyrrole บนพื้นผิว MgO หลังจากกำจัดโมเลกุล pyrrole ส่วนเกินออกด้วยการทำสุญญากาศที่อุณหภูมิห้อง จากนั้นจึงค่อยเพิ่มอุณหภูมิตัวอย่างและวัดปริมาณที่หลงเหลืออยู่บนพื้นผิว